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DESTRUCTION OF LARGE NETWORKS 

Background. Interest in the problem of network reliability increased rapidly owing to the new 

field of application, including computer and transport networks, as well as social and innovation 

networks. Models and algorithms of analysis of network destruction dynamics are not sufficiently 

advanced. In present paper, the simplest — epidemic — type of destruction is considered. 

Results and conclusions. Epidemic type of network destruction is observed when destruction of 

the series of network nodes in certain step causes destruction of all the adjacent nodes in the next 

step of the process. The simple algorithm of calculation of step-by-step destruction of networks in 

the form of graphs and directed graphs was constructed with the aid of adjacency matrices. Gener-

al recommendations on efficient network protection by transition from the initial graph to the 

frame are given on the basis of the analysis of matrix solution and graph structure. It is established 

that efficiency of operation and reliability of the network are interdependent and cannot be pro-

vided simultaneously. The relation between large network reliability and problem of globalization 

is remarked. 
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Introduction 

Networks, from distribution to water-supply pipeline ones, are typically representative of a 

wide range of complex systems where binary connections play an extremely important role. 

They serve for transmitting resources between communications centers. Networks are ex-
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posed to external and internal factors, thus they are very likely to break down. This may lead 

to a wide range of consequences that may undermine the whole system in a number of ways. 

The general characteristics of destruction types of networks is given in [1—3]. At an earlier 

stage of network reliability and destruction research, the focus was mainly on applications to 

electrotechnical chains and communications systems [4, 5]. The problem of network reliabili-

ty has been given more prominence since the expansion of new application fields including 

computer, transport, social, and innovation networks [6—10]. At the same time, models and 

algorithms of analysis of network destruction dynamics have not been entirely developed. A 

more detailed analysis is thus required both of general patterns of network destruction and of 

ways of their protection with the consideration to some certain peculiarities of their different 

types as well. 

In the present paper we will limit our study to destructions of a simpler type which is of epi-

demic nature. In this case, destruction of any element at some moment leads to destruction of 

neighboring elements at the next stage. Let us assume that initially there is only one destroyed 

network node, at each following stage destruction of nodes neighboring a destroyed one oc-

curs. If an initial node is not the only one, an additional fictitions node connected with the 

nodes of the initial destruction stage is introduced, thus an initial state of a network will occur 

only after the first stage. The further destruction development is easily visually traced on a 

graph provided it is not of a large size. Such a task becomes too complicated for direct analy-

sis in large systems and the solution can be found through an adequate mathematical appara-

tus which is necessary to develop. The ultimate goal of the research is to determine the de-

struction time for the whole system, i. e. a number of steps to its complete destruction, time of 

loss of network coherence and finally to outline efficient protective measures. 

1. A mathematical model 

In the example under consideration destruction goes through adjacent nodes. Each step in 

time means addition of another step to each way on a graph of length t coming out of the first 

destroyed node. This allows to use the well-known theorem [11] for description of network 

destruction. According to the theorem, if an adjacency matrix of a graph C is raised to power 

t , an element ( )ijA t of a matrix ( ) tA t C is equal to a number of ways of length t  from node 

iV  to node jV . The null elements ( )ijA t  indicate that node jV  cannot be reached in steps t  

from node iV . 
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Recall that the initial matrix C  is valid and symmetrical for non-oriented graphs. The same is 

true for all its powers. Hence matrix ( )A t  contains all the inforamtion about the network de-

struction dynamics on step t . As matrix С is valid and symmtrical, it can take the form 
1C BLB for non-oriented graphs where L  is a diagonal matrix made up of the proper val-

ues of matrix C : 
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In any case a diagonal element max( )t dominates at long periods of time. Let us assume that 

max 1  . Then at long periods of time 
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where  1
1 1ij i j

G B B . If matrix G  has null elements, this means that an initial network is 

not coherent and destroyed in no period of time. 

If we construct a matrix 

 
2( ) ,tT t I C C C      (6) 

its nonzero elements fix network nodes destroyed in t  steps. Hence, matrix ( )T t  describes all 

the destructions that occurred in a network within time t . Complete network destruction after 
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time t  at the start from node iV  means that all the elements became nonzero in a correspon-

dent line i  of matrix ( )T t . Selecting a line which will be the first to become nonzero in this 

sequential process, we can determine the minimum time of network destruction mint  and an 

initial height iV  which corresponds to such a pattern.  

By finding the last line which became non-zero, we will determine the maximum time of net-

work destruction maxt  and a corresponding starting node. An isomorphic double graph can be 

constructed for flat networks by replacing nodes by arcs and arc by nodes. This will finally 

enable us to consider the task of sequential network destruction using the method above. 

2. Network protection 

Various strategies of network protection can be proposed depending on a goal. One of such 

goals can be maximum destruction slowdown by increasing the length of the ways, i. e. the 

time of complete destruction t . In terms of the structure of matrix ( )A t  protection means re-

moving fastest filling lines, i. e. complete protection of corresponding elements from destruc-

tion, which will make the ways longer and increase the time of complete destruction. 

Examining the limit specific cases can help to clarify possible variants of network protection. 

Thus, it is extremely difficult, next to impossible, to protect a fully connected network, since 

any node is reached within one step. In a ring star graph presented in Fig. 1 protecting a cen-

tral node is most reasonable, which will also increase the time of network destruction by 

~ / 2N  times where N  is a number of nodes on a loop. 

Such a structure is, for instance, typical for the Moscow underground. An example of destruc-

tion being examined may be realized during water flooding of single-level stations with the 

increase of a water level in one of them. It should be borne in mind that if protection will set 

the central node out of order, the time common for sequential access between the network 

elements also increases from 2 to ~ / 2N . A ring star network structure is common for cen-

tralized management systems. Its topological peculiarities play the most significant part in 

boosting high-efficiency at the normal operation and a rapid system breakdown in case of a 

central node failure. Thus, the reason for the Soviet Union’s collapse, for example, are unmis-

takenly of economical, social and political nature. Its rapid character is closely associated with 

a centralized management model in the country. 
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In another specific case, when a network takes the form of a tree, whose ways of destruction 

are nowhere interwoven making a complete network destruction rather long in time at any 

initial destruction point. A covering graph corresponding to an initial one presented in Fig. 1 

is illustrated in Fig. 2. In this case, obviously the time of destruction significantly increases. 
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Fig. 1. Graph with a ring star structure Fig. 2. A covering tree which  

is a subgraph of an initial graph 

It becomes clear that some contradictory conditions are to be followed for perfect functioning. 

On one hand, a way between two nodes can be maximum short. This provides for a high-

speed resource motion along a network. On the other hand, a high-speed communication in-

stallation at the same time makes rapid network destruction highly probable. This contradic-

tion can in a way be eliminated if two networks are considered: one for a normal functioning 

and the other, functioning in the protection mode, is a subgraph of the first one. In other 

words, it should be accpted that a highly coherent network in danger of destruction imme-

diately transfroms into a tree. As covering trees are not limited in number, it would be reason-

able to select the strongest one. Destruction in tree reminds a branching character process. Its 

complete time of destruction corresponds to the longest branch from an initial network. Each 

tree has its center, i. e. each node maximum distant from the ends. In order to find the longest 

way from a given node i to all possible dangling vertexes j . Then out of all the vertexes i  we 

select the one for which this value is maximum: 

 
 min maxk k

iji j
t t . (7) 

Index k  labels different covering graphs. Further, out of all the graphs we select the one for 

which the value obtained is maximum: 
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The centre of the tree obtained needs maximum protection. This approach to network protec-

tion organization reduces the protection expenses and enhances the reliability. 

Analyzing very large networks, it is reasonable to use the matrix limit. In this case, adjacency 

matrix ijC  is substituted by symmetrical integral nucleus ( , )C x y , while sequential steps of 

destruction are described by iterations 
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The following integral equation is valid for a limit distribution 

 1 1 1( , ) ( , ) ( , ) ( , ) .С x y C x y C x y C y y dy     (10) 

It can be solved by iterations, which is equivalent to summing up a row in Equation (9). It 

should be noted that function ( , )C x y  for a model examined is discontinuous. Thus, integra-

tion in formulae (9) and (10) is symbolic, while real calculation procedures presuppose a di-

rect summing up. 

Conclusions 

It is thus revealed that operating efficiency and network reliability are mutually dependent and 

can not be provided simultaneously. 

Simple and efficient matrix methods of modelling and analysis of a stepwise process of net-

work destruction have been discovered. They allow to make simultaneous calculations of all 

possible destruction examples depending on a number of initial destroyed nodes. If necessary, 

each single destruction example can be easily visualized. 

This paper looked into the simplest models of determined destruction occurring at a constant 

speed without restoration. In real systems it may become necessary to consider the factors earli-

er neglected. A probabilistic nature of destruction may be taken into consideration by introduc-

ing a jump matrix supposing that destruction has Markov behavior. Varying longevity of neigh-

bouring nodes destruction can be described by introducing fictitious intermediate nodes. 

The results obtained allow to take a fresh look at globalization as a problem of efficiency and 

reliability of global information networks, finance and epidemic spreads. Even a simple mod-
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el examined in this paper indicates that communications, trade and transport efficiency rise 

owing to globalization simultaneously leads to a greater risk rise during the drestruction of 

corresponding networks. Nowadays, we are getting acutely aware of these problems and most 

importantly, practical conclusions and recommendations should be in agreement with the 

network destruction laws discovered. Creation of fully connected global networks without 

effective mechanisms of their protection may have a disastrous outcome. Further development 

of theoretical models of network protection and, most importantly, their practical realization 

are imperatives of the years to come. 
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