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MODIFICATION OF DIMENSIONALITIES OF COEFFICIENTS 

OF HEAT CONDUCTION, TEMPERATURE CONDUCTION AND DERIVATION 

OF FOURIER'S EQUATION OF UNSTEADY HEAT CONDUCTION 

Problem statement. A study of building structure heating in case of fire requires solutions of the 

problems of multilayer structure heating. Available analytical solutions of such problems are cum-

bersome mathematical formulae which are of little use for engineering practice. 

Results. New dimensionality of heat and temperature conduction coefficients is established by the 

author of the paper on the basis of modern concepts of heat transfer in solids. This dimensionality 

reflects physical sense of the coefficients and enables the author to derive modified Fourier's equa-

tion of unsteady heat conduction. New technique for the calculation of multilayer structures heat-

ing was developed based on the obtained equation. The technique involves reduction of multilayer 

structures to single-layer wall. 

Conclusions. High accuracy and efficiency of the method proposed are shown by the example of 

calculation of heating of two-layer wall reduced to single-layer wall by the comparison with nu-

merical methods and analytical calculations for single-layer wall. 

Keywords: heat conduction coefficient, temperature conduction coefficient, modified Fourier's equation of un-

steady heat conduction, heating, multilayer building structures. 

Introduction 

Starting from the 20th century, there has been an intense development of analytical methods 

for unsteady heating of solid bodies, as well as of multi-layer building constructions. By now, 
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analytical solutions have been obtained for the calculation of unsteady heating of various con-

structions which are widely used in engineering practice. 

Nevertheless, the analysis by means of various mathematical physics methods performed on 

heating solutions for multi-layer constructions and of building constructions as well under the 

action of a high temperature of fire under various boundary conditions shows [1—8] that ul-

timately, calculating expressions for them invariably turned out to be elaborate formulas. For 

these to be used in practice, a further study is needed which hinders the calculation process. 

The exception is numerical methods using computing technology. 

1. Current interpretation of the dimensionality of the coefficient of heat conductivity 

The equation for unsteady heat conduction was proposed by J. B. Fourier in 1725. The dimen-

sion of the coefficient of heat conductivity was the same as for steady heat conduction, which 

does not comply with the physical essence of the processes of unsteady heat conduction. This 

error is of theoretical, methodical and practical importance. To eliminate it, let us first consid-

er a one-dimensional steady temperature field (Fig. 1) [1, 9, 10]. 

 

 

Fig. 1. Isotherms of a steady temperature field 

 

A temperature field in steady processes is determined by the equation 

 ( ).t t x  (1) 
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The sharpest change in temperature occurs in the direction to the normal n to an isothermal 

plane. The limit of the ratio of the temperature change Δt to the distance between the iso-

therms on the normal Δn is called the temperature gradient [1] and designated by one of the 

following symbols: 

 
  0

/ .
n

tlim t n qrad t
n 


   


 (2) 

Temperature gradient is a vector directed towards a normal to the isothermal plane towards 

the increase in temperature. Its dimensionality is 0C/m. Heat passing through in a unit of time 

and related to a unit of area of an isothermal plane is called the density of a heat flow. 

The major heat conduction law shows that density of a heat flow is directly proportional to the 

temperature difference and is determined by the equation 

 

   .tq grad t or x
x


   
   (3) 

The physical sense of the conductivity coefficient is determined from the ratio (4) for a steady 

temperature field, which means that 

 
2 1

2 1

.T TQ
S x x


 

 
 (4) 

The conductivity coefficient thus equals the heat conducted in a unit of time through an area 

unit as temperature varies in a unit of length of a normal which is one degree and thus has di-

mensionality kJ/m · h · 0C. 

2. The deduction of a modified equation for unsteady heat conduction by Fourier 

Heat transmitted in steady heat conduction and passing through two surfaces located at some 

distance away from each other will be the equal, but in unsteady heat conduction some of the 

heat is used to heat (cool) the body, therefore heat passing through these surfaces will be dif-

ferent. 

The deduction of a differential equation for unsteady heat conduction for a one-dimensional 

temperature field is given in, for instance, [1, 9]. For this purpose, in one-dimensional and iso-

tropic, non-restricted plate an elementary parallelepiped evolves whose volume is dx dy dz 

(Fig. 2). 
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Fig. 2. Heat flowing  

through the elementary volume  

of the body in the unsteady mode 

Heat passing through the left side dy dz into the parallelepiped in a unit of time is qx dy dz, 

while heat passing into the opposite side in a unit of time is qх+dx dy dz. If   x x dxq q  , the ele-

mentary parallelepiped heats up, the difference between these flows according to the energy 

conservation law then equals the heat accumulated, i. e. 

 
,x x dx

tq dy dz q dy dz c dx dy dz


  


  (5) 

where с is the coefficient of specifiс heat capacity of the body; ρ is the density of the body. 

The value qx+dx is an unknown function х. If we arrange it in the Taylor’s series and restrict 

ourselves to the first two members of the series, we can write 

 
 .x

x dx x
дqq q dx
дx    (6) 

Then, from equation (5) we have 

 
.xq tdx dy dz c dx dy dz

x
 

  
 

 (7) 

Using the equation for a heat flow (3), we get Fourier’s unsteady heat conduction equation, 

 

2

2 ,t ta
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 
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 (8) 
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where t is the temperature of the body, degrees; x is the coordinate of the body, m; а is the 

heat conduction coefficient, m2/h. 

The above deduction of a differential equation for Fourier’s unsteady heat conduction illu-

strates the formal approach to the use of dimensionality of heat conduction coefficient ob-

tained for the conditions of unsteady heat conduction.  

A fault of this approach is seen, for instance, from Fig. 2, as well as from the formula (6), 

which means that a different amount of heat is transmitted through the opposite sides of the 

parallelepiped. Some of the heat remains in the parallelepiped, due to which fact its tempera-

ture increases. As noted in [11], “as the terminology was crucially reviewed, there was a con-

stant need as new terms emerged to leave some of the terms intact, which, if strictly eva-

luated, are not quite satisfactory but do not cause confusion and practical errors (for instance, 

“heat conduction coefficient”)”. 

In the light of the modern conceptions of the heat conduction process (for example, in [12]), 

heat in solid bodies is transmitted by the motion of electrons and oscillation process in a crys-

tal lattice of the body. Thus, heat conduction in solid bodies is intimately associated with the 

volume of the body, therefore the dimensionality of the heat conduction coefficient has to be 

defined in the corresponding manner, i. e. as the amount of heat transmitted in a unit of vo-

lume as the temperatures of the opposite surfaces (a one-dimensional field) differ in one de-

gree. This is clearly seen in Fig.2. Therefore, the dimensionality of the heat conduction coef-

ficient is defined as an amount of heat passing through a unit of volume in a unit of time with 

the difference of the temperatures on the opposite surfaces in one degree and has the dimen-

sionality of kJ/m3 · h · 0С. 

We have thus clarified the physical essence and adequate dimensionality of the heat conduc-

tion coefficient for unsteady heat conduction. So, the dimensionality of the thermal conduc-

tion coefficient is as follows: 

 

3
1

3

1 .kJ kg degree ma
c m h degrees kJ kg

 
      

   
 (9) 

The coefficient а thus has the dimensionality τ-1 and has the physical sense of the coefficient 

of the relaxation of the temperature inequalities in the solid body or, as noted in [4], characte-

rizes the speed of the temperature change in the solid body in unsteady heat conduction. 
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Having obtained a new dimensionality of the coefficient a, we get an inconsistency between 

the dimensionalities in the left and right parts of the equation for Fourier’s unsteady heat con-

duction, i. e. 

 3 .degrees degrees
h h m




  (10) 

To eliminate this inconsistency, it is enough to move to dimensionless coefficients. A speci-

fied size of the body which is expressed in, for instance, meters, will be expressed in the di-

mensionless form in relation to 1 m. 

Thus, instead of, for instance, х = 0.3 m, we get 

 

0,3 0,3.
1 1
x mX

m
     (11) 

As a result, we get the following Fourier’s modified unsteady heat conduction equation 

 
2

2 ,t ta
X

 


 
 (12) 

where Х is a dimensionless coordinate; а is a relaxation coefficient of the temperature inequa-

lities of the solid body with the dimensionality h-1. 

Now, the dimensionalities in the right and left parts of the equation (12) are identical and 

equal 0С /h. The obtained modified equation is not different from Fourier’s unsteady heat 

conduction equation, as the right and left parts of the equations (8) and (12) are identical. 

However, for the obtained equation, the value of Fourier’s criterion is significantly more sim-

ple, for it has only two arguments a, and τ which have dimensionality. More importantly, the 

modified equation allows one to solve the problem of heating multi-layer constructions by 

transforming them into a single-layer wall. 

3. Methods of moving from the task of heating multi-layer systems to heating of a single-

layer wall 

The modified Fourier’s equation for unsteady heat conduction yields a simple solution for 

heating multi-layer constructions due to transforming them into a single-layer construction. 

Let us analyze this using the example of the solution of the problem of the first order when a 
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certain temperature is specified on a surface of the system. Let us accept that it is a constant 

value tпов = const and that there is no heat exchange on the opposite side. 

The mathematical problem in this case reduces to solving a system of differential equations 

 

2
1 1 1

1 2

2

2
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....................................
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n
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
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  (13) 

with the following initial and boundary conditions: 
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  (14) 

where ( , )it X   is the temperature of i-th plate; Х is a dimensionless coordinate; δi is a relative 

dimensionless coordinate; τ is the time; λi, ai are coefficients of heat conduction and the speed 

of the substance temperature change in the i-th layer; t0 is the initial temperature of the system 

of plates; tconst is a constant temperature on the surface of the first plate. 

In order to make the solution of this problem easier, we transform a multi-layer plate into a 

single-layer one with a certain value of the coefficient a. If we regard the coefficient а as a 

collection of three values a = λ/cρ, the ratio λ/ρ included in it (according to the accepted di-

mensionality of the heat conduction coefficient λ) will get the dimensionality 

 

3

3 0 0 .kJ m kJ
m h C kg kg h C


  

    
 (15) 

This ratio shows what amount of heat 1 kg of the substance needs for its temperature to go up 

by 1 0C in 1 hour. This part of the coefficient а is time-dependent. 

Another component of the coefficient а, specific heat coefficient, has the dimensionality 

kJ/kg · 0C. This value is not time-dependent. The product of specific heat coefficient per a 
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body volume is a specific volume heat of the body (i. е. (сV) or (cδ3), where V is the volume 

of the body; δ is the thickness of the plate) and describes the connection between the amount 

of heat (kJ) and the temperature of a body of unit density. The specific volume heat shows 

what amount of heat is needed to be supplied to a unit if the body volume so that its tempera-

ture went up to 1 0C. 

It should be taken into account that it is temperatures of the body volumes but not their exte-

rior energies that level off in unsteady heat conduction [13]. Specific heat and density of the 

body (therefore, the mass as well) are different indicators: specific heat describes the tempera-

ture and density characterizes the interior energy of the body. Therefore, in order to move 

from a multi-layer to a single-layer plate in unsteady heat conduction, it is necessary that all 

of the layers are made homogenous according to the value of the specific volume heat of the 

substance so that the following condition is true for all the layers transformed 

  33
max ,i i i м

c c    (16) 

where cmax is accepted for a layer with the value amax. 

We thus have arranged the temperature scales of some layers. Therefore the thicknesses of the 

modified layers can be determined by the formula 

 

3¸
max

.i
i м i

c
c

    (17) 

In order to preserve the thermal resistance of the initial and modified i-th layer, the following 

should be fulfilled 

 
,  

( ) .i m
i м i

i


  


 (18) 

In order to preserve the condition of energy conservation for the initial and modified thickness 

of the i-th plate, the inequality should be valid 

  3 3
max , m ,i i i i i i im

с t с t          (19) 

from which the value of the density coefficient for a modified layer can be determined. 
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As a result of the transformations, we got a modified single-layer plate with the identical val-

ues of specific volume heat of some layers which correspond to the value for the i-th layer 

with the values ai which equals amax. Based on that, we have transformed the thicknesses of 

the other plates. The overall thickness of the obtained single-layer plate is thus 

 
1 ,

1 2

.
n n

м i i m
i i

R X X X
 

     (20) 

We thus have a single-layer plate with the overall thickness determined by the formula (20), 

with identical values of specific volume heat for all the layers which is 3
max maxc   . The values 

δi, м, λi, м and ρi, м are calculated by the formulas (17), (18), (19) respectively. 

The unsteady temperature field in each point of the obtained single-layer plate is determined 

by the relative coordinate and Fourier’s criterion. For the obtained single-layer plate, a unique 

value of the coefficient аi, (that equals amax) is accepted. The value of Fourier’s criterion for 

the i-th layer of the modified single-layer plate, due to a change in the coefficient а, is to be 

determined by the formula 

 
2

0, , max / ,i i i прF K a R    (21) 

where amax is the overall identical value for all the layers of the modified single-layer plate, 

Rпр is a reduced overall thickness of the modified single-layer plate which is calculated by the 

formula (20); the coefficient Ki,τ is introduced to preserve homochronity [14] (time similarity) 

of heating of all the layers of the initial multi-layer plate due to a change in the coefficient а. 

Therefore, for a layer with the value аi, that equals amin, the value of the product aτ is (amax /amin) 

times increased. Thus, for the other layers, time is to be increased by the same number of 

times. Thus the coefficient Ki,τ for the other layers is defined to be 

 , max / .i iK a а   (22) 

In order to preserve the similarity (homochronity) in the course of heating all the layers of the 

multi-layer plate, it is necessary that the value аi is also increased by the same coefficient for 

all the layers, i. e. Fourier’s criterion remains equal for each initial layer. Thus, during calcu-

lations, the coefficient аi for heating of the i-th layer is to be Ki,τ times increased. 
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So, in order to calculate heating of the other layers of the initial multi-layer plate, a nomogram 

for the calculation of heating of a single-layer plate can be used. For each initial layer, it is 

necessary that there is its own value of Fourier’s criterion for each initial layer according to 

the formula (21). 

The scheme of moving from the multi-layer plate with various thermophysical characteristics 

to the single-layer plate homogenized according to the value 3
max max·c   is presented in Fig. 3. 

A change in the coefficient а is compensated by the coefficient Ki,τ (from the conditions of 

preserving homochronity of the process for the entire system). 

 

а) 

 

b) 

 

Fig. 3. Scheme of transforming the multi-layer plate into the single-layer plate: 

а) parameters of the multi-layer plate; 

b) parameters of the specified single-layer plate homogenized according to the value 3
max max·c   

 

For the sake of definiteness, the coefficient а acquires the minimal value for the n-th layer the 

maximum value for the first layer, the intermediate value for the i-th layer. Therefore, the 

coefficient Ki,τ for the n-th layer equals 1, for the other layers it equals the value calculated 

according to the formula (22). 

4. Methods of calculating the heating of multi-layer constructions based on their trans-

formation into a single-layer plate 

The calculation of the heating of a multi-layer plate transformed into the single-layer plate is 

made in the following order: 

1. All the layers of the multi-layer plate are homogenized according to the value 
3

max max·c  , the thickness of the modified layers is calculated by the formula (17). 

2. The overall thickness of the modified layer as well as the relative coordinates of the  

i-th layer δi, m/Rm is calculated according to the formula (20). 
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3. The value of the coefficient of time transformation Кi,τ is calculated by the formula (22). 

4. The value of the criterion F0 is calculated for each layer using the formula (21): 

  2
0 max , / .i мi

F a К R     

5. The initial temperature in the multi-layer plate in the process of heating is calculated 

for the specified values of the coordinates and time using the formula and nomogram 

given in [1, 14, 16]. 

5. Calculation example 

The heating of a two-layer plate needs to be calculated on the condition that at the initial mo-

ment, the temperature of the layers is the same and is 20 0С, at the left boundary (Х = 0), the 

temperature at the initial moment becomes 600 0С, at the right boundary there is no heat ex-

change (heat flow equals zero).  

The thickness and thermal physical characteristics for the plates are: 

 for the first layer:  

1 0.06 m  ; -1 0 -1
1 1.094 watt m C   ; -1 0 -1

1 0.464c watt h kg C    ;  

3
1 1900 kg m    ; 3 2 1

1 1.237 10a m h    ; 

 for the second layer: 

2 0.15 m  ; -1 0 -1
2 0.0931 watt m C   ; -1 0 -1

2 0.638с watt h kg C    ; 

3
2 220 m     ; 3 2 -1

2 0.661 10a m h   . 

The solution of this task is found according to the above method, i. e. by moving from heating of 

a single-layer plate with specified boundary conditions [6, 17]. In order to use the well-known 

solution, it is necessary to transform a two-layer plate into a single-layer one. For that, the value 

аmax will be accepted as the calculation value, i. e. for the first layer аmax = 1.237·10-3 h-1.  

Then, using the formula (17) we determine the modified thickness of the second layer: 

2 332, 2
1

0.55 0.15 0.1668.
0.4м

c
c

      
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Using the formula (20), we determine the overall thickness of the modified layer: 

1 2, 0.06 0.1668 0.2268.m mR         

Using the formula (21), we determine the criterion F0: 

2 3 2
0 max ,( ) / 1.237 10 / 0.2268 0.02405 .i i i m i iF а K R 

            

In order to satisfy the condition of homochronity for the two-layer plate, it is necessary to 

determine the value of the transformation coefficient (Кi)τ for each layer according to the 

formula (22).  

For the first layer it is  

Кi,τ = 1.237·10-3/0.661·10-3=1.871; 

for the second layer  

К2,τ = 0.661·10 -3 /0.0661·10-3 = 1. 

Therefore, in the calculation of the heating of the first layer the value of the criterion (F0.1)m is  

(F0.1)m = 0.02405·1871τ = 0.045τ; 

for the second layer the value of the criterion  

(F0.2)m = 0.02405τ. 

Then, using the graph and the calculation formula [1, 14] we determine a change in a tem-

perature field in the obtained single-layer plate for various section coordinates. In Fig. 4 there 

are graphs of heating of the two-layer plate under investigation that are obtained using the de-

veloped method and numerical method [15, 16]. 

Fig. 4 shows that the calculation results are in good agreement in a wide range of temperature 

and time. The time changed from 0  to 30 h (0<F0<1.57). The maximum divergence of the 

obtained results does not exceed 15 % as related to the numerical calculations.  

The maximum divergence is observed at the boundary of the layer contact, while for the other 

sections of the examined two-layer plate, the maximum divergence does not go above 10 %. 
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Fig. 4. Graphs of a change  

in the heating temperature of a two-layer plate  

for various moments of time: 

 calculation by means  

of the numerical method; 

—— calculation using the suggested method; 

х — thickness of the plate 

 

Conclusions 

Based on the research presented in this paper, it was for the first time proven that the dimen-

sionality of heat conduction coefficient in unsteady heat conduction is defined as 

kJ/m3 · h · 0C; thus, the dimensionality of heat conduction coefficient (relaxation coefficient 

of changes in the temperature of the solid body) is defined as 1/h. 

Based on that, a modified equation for Fourier’s heat conduction has been obtained, based on 

which methods for the calculation of the heating of multi-layer constructions which reduce to 

heating of a single-layer plate. Solutions, graphs and nomograms available in the literature on 

unsteady heat conduction for single-layer plates can be used in the process of calculation of 

the heating of constructions of this kind. 

The calculation example indicates that the suggested method is highly efficient in its practical 

application and proves to be highly accurate in engineering practices. 
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