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METHOD OF CONSTRUCTION OF THE LIMIT BEARING CAPACITY 

OF IDEALLY PLASTIC COMPOSITE SECTIONS OF RODS 

IN A COMPLEX STRESS STATE 

Statement of the problem. The purpose was to create a numerical method for designing fluid 

hypersurface for an arbitrary rigid-rod section consisting of any number of materials in a complex 

stress state. W$ identified an algorithm of solving the problem, based on the method of limit equi-

librium and extreme principles of maximum load power and minimum dissipation rate. The above 

numerical method can be applied to arbitrary cross-sections. While implementing the method, a 

section is divided into areas for which equations of equilibrium and yield conditions are com-

posed. Yield conditions can be arbitrary. In order to solve the problem the method of linear pro-

gramming is used. 

Results. Based on the presented method fluid hypersurfaces of the most common composite cross 

sections used in bridge construction were designed. For reinforced concrete sections hypersurfaces 

were designed with and without consideration of the concrete in tension. 

Conclusions. The algorithm for designing the surface is quite universal and effective. Due to a 

small dimension of the problem no significant computing resources are needed to address it. This 

method can be applied to the analysis of structures for the first group of limit states. 

Keywords: fluid hypersurface, rigid plastic rod, method of limit equilibrium, composite section. 

Introduction 

In order to determine limit load parameters [1—3] or to optimize a bar structure using the limit 

balance method for design sections, fluidity conditions need to be in place. As for a complex 

size of a section made up of several materials with different fluidity limits, determining limit 

efforts can be a daunting task commonly having no analytical solution [4]. 
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1. Statement of the problem 

The paper introduces and tests a numerical method of designing a hyper surface for random 

sections of bars for a complex state of stress. In the proposed method, a section area is split 

into the final subareas for each of which the fluidity conditions are in place based on the 

properties of the material of a particular section area. An assumption is made that in determin-

ing limit efforts for sections of thin-walled bars there are no stresses generated by a bimoment 

and flexural-bending moment according to the theory by V.Z. Vlasov. Further on, for a group 

of section areas, a balance equation matrix is designed. Based on the conditions of fluidity 

and balance equations, mathematical models are designed for limit balance of a section: a stat-

ic and kinematic one.  

The static model is as follows  
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where p0 is a limit load parameter; S is a vector of actual efforts during plastic failure; N0 is a vec-

tor of limit efforts of final subareas; A is a balance equation matrix of final subareas; % is a vector 

of load distribution; Ô is a matrix  of fluidity conditions.  

The purpose function of linear programming (1) is a maximum power of load.  

As a result of the linear programming problem (1), a limit load parameter p0 and effort distri-

bution S is universally determined over the final subareas of the section. In order to determine 

the boundaries of possible limit states of the section, it is necessary that using a vector % all 

possible combinations of the examined efforts are detailed. As a result of joining the points in 

the graph obtained while solving the linear programming problem (1) for each effort combi-

nation, we get a boundary of the area of possible limit states of the section. The kinetic model 

is as follows  
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where ,+ −λ λ� �  are vectors of positive and negative deformation rates; U�  is a vector of deforma-

tion displacement rates. The solution of the kinetic model (2) using linear programming allows 

two questions to be answered. The first one is about how plastic hinges are formed: the greater 

the deformation rate is, the faster a plastic hinges forms in the final subarea that corresponds to 

a particular element. The second one is about how compression and tension zones are divided 

following the formation of a plastic hinge in the section. Whether the final subarea belongs to 

any of the zones depends on the sign of the corresponding element of the deformation rate vec-

tor. For a more detailed description of the kinetic model see the paper [5]. 

The balance equation for the section (Fig. 1) is as follows  
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where A is the area of the section; dA is the area of the section segment; k is a number of seg-

ments in the section; �x is a normal stress; &xy, &xz are stress tangents; x, y are coordinates.  

Fig. 1. Section of the bar 
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The structure of the balance matrix for a section where 6 effort component is takes the follow-

ing form  
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where { }1 1EE = �  is a single vector; { }1 kHH z z= �  is a coordinate vector of the segments 

along the axis z; { }1 kBB y y= �  is a coordinate vector of the segments along the axis y (see Fig. 

1).The dimensionality of the vectors EE, HH, BB equals the number of the segments in a sec-

tion. In the balance matrix (4) the first column relates to the balance of normal forces along 

the axis x, the second column relates to the balance of tangent forces along the axis y, the third 

one corresponds to the balance of tangent forces along the axis z. The lines in the matrix (4) 

corresponds to the efforts in a section: the first line is tension-compression along the axis x, 

the second one is a displacement along the axis y, the third one is a displacement along the 

axis z, the fourth is torsion around the axis x, the fifth one is a curve along the axis y, the sixth 

is a curve along the axis z. 

Depending on the strain state of the section, a matrix (4) undergoes transformations. During a 

curve in two planes accompanied by tension-compression a balance matrix is  
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during torsion accompanied by tension-compression a balance matrix is  
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The expression of a fluidity matrix is dependent on the acting forces in a section as well as the 

chosen fluidity conditions.  
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As a rule, the dimensionality of the linear programming problem is not high and the algorithm 

is sufficiently effective in the calculation plan. 

2. Numerical study 

In order to put the algorithm to test, let us consider most common longitudinal section em-

ployed in bridge construction. This kind of sections commonly has a complex shape and are 

composite ones.  

1. Section of a ferroconcrete I-beam of 24 m according to a standard project «3.503.1-81. 

Manufacture 7-1. Span beams of 12, 15, 18, 21, 24 and 33 m in length, wholly transportable, 

post-tension». The geometric sizes and reinforcement of the section are presented in Fig. 2.  

Fig. 2. Sizes and reinforcement  

of a section of a ferroconcrete beam 
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The section is composed of two concrete types: a beam section made from concrete class B35; 

monolith segments from concrete '40. The division of a concrete section into segments is 

shown in Fig. 3.  

Fig. 3. Division of a concrete section into elements  

This method allows for the tension resistance of concrete. Fig. 4 shows the graphs of bearing 

capacity of a section considering and not considering the tension resistance of concrete.  
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2. Section of a ferroconcrete beam. The geometric sizes of the section and reinforcement are 

in Fig. 5. It is assumed that a part of a ferroconcrete beam of the section is composed of dif-

ferent types of concrete: a console part of the changeable section is made from concrete '35, 

the rest is from concrete '30. Fig. 6 shows the boundaries of possible limit states of the sec-

tion considering the tension resistance of concrete.  

3. Section of a box ferroconcrete beam. The geometric sizes of the section and division of the 

section into elements are in Fig. 7. A schematic of the location of a strained reinforcement and 

reinforcement following the reinforcement of the section is shown in Fig. 8.  

Fig. 5. Section of a steel ferroconcrete beam  

B
en

d
in

g
 m

o
m

en
t,

 k
N

M
 

Longitudinal force, kN ×10
5

__ Not considering 

tension operation 

of concrete 

... Considering ten-

sion operation of 

concrete 

Fig. 6. Hypersurface 

of the fluidity of the 

section of a steel fer-

roconcrete beam 



Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Construction and Architecture 

50 

Fig. 7. Sizes of the section of a ferroconcrete beam and division of the section into segments 

Fig. 8. Schematic of the location of a preliminary strained reinforcement  

A preliminary strained reinforcement according to GOST ((�")) and EN have different 

fluidity limits. 

Fig. 9 presents the boundaries of possible limit states of the section of a ferroconcrete box 

before and after the reinforcement as well as considering and not considering tension opera-

tion of concrete. 

Conclusions 

1. Therefore the suggested numerical method of designing a hypersurface of the fluidity is 

sufficiently universal and efficient.  
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2. The method enables a numerical solution of designing the fluidity conditions for random 

sections composed of materials with different plastic properties with a specific degree of ac-

curacy. There might be different fluidity criteria in place for different areas of a composite 

section. 
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Fig. 9. Hypersurface of the fluidity of the section of a ferroconcrete box beam

3. Using this method, different defects can be modelled in sections with changes made to the 

characteristics of specific areas of a section (change in the area, fluidity limit). The algorithm 

can be applied for a numerical analysis of a spatial plastic failure of bar systems [6, 7, 8]. 

4. The method was tested on simplest sections and proved to be in good agreement with the 

analytical solutions [5]. 
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