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ELASTIC-PLASTIC TRANSVERSE BENDING OF A ROD  

DURING LIMITED PLASTIC DEFORMATION 

Statement of the problem. The problem of calculating bending of a rod in the state of flat trans-

verse elastoplastic bend during limited plastic deformation is discussed. The transverse section of a 

rod with two axes of symmetry has a form of a fifty-fifty beam with two shelves: external and in-

ternal. A complex form of cross section explains practically unsolved difficulties in terms of its 

analytical solution. It leads to the use of math software and programming and math support, par-

ticularly MathCAD. In the first case we take as external loading a point force applied in the middle 

of the flange; in the second case it is an evenly distributed loading acting along the whole rod. 

Results. As a result the bearing ability of the rod during limited plasticity is determined as well as 

the boundary of plastic and elastic deformations; residual stress in the rod following its complete 

unloading; deflected rod axe and residual deflection in the rod following its complete unloading. 

Conclusions. The calculation shows that the use of modern information technologies, particularly 

software and math support of PC allow one to deal with difficult and laborious problems, in terms 

of the design of the analytical solution of mechanics of a deformed solid body. 

Keywords: plasticity, elastic-plastic bend, bearing ability of a rod, deformation, a section with two axes 

of symmetry. 

Introduction 

The calculation of bending structures considering plastic deformations reveals hidden strength 

potentials with the rigidity normally not being provided. This makes it necessary to use li-

mited plastic deformations in calculations when yield occurs not at all the points of a cross 

section of the rod. If a cross section is different from a rectangular one and its width changes 

discretely along the height, an investigation of the stress-strain of the rod faces mathemati-

cal challenges associated with analytical expression for the height of the elastic core as a 

function of a longitudinal coordinate. If readily available mathematical PC packages, e.g. 

MathCAD, are used to calculate a rod bending under an elastic plastic load, these challenges 

can be eventually, though with some difficulties, addressed. 
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1. Theoretical foundations for the calculation of bending rods considering plastic 

deformations 

A flat transverse bending of rods, cross section of which has two symmetry axes is the 

simplest problem of the theory of plasticity according to the ideal Prandtl curve. The major 

assumptions of the calculation of an elastic plastic bending of a rod with two symmetrical 

axes are detailed in special literature, e.g. in [1—5].  

They all come down to the following. For a cross section with two symmetry axes, a 

neutral axis during elastic plastic deformation (axis х) coincides with the central axis (axis х0).  

It is assumed that the upper fibers in the elastic plastic deformation area are compressed and 

the lower ones are stretched.  

A destructive load in flat transverse elastic plastic bending of a rod is found according 

to the condition that a bending moment Mx(z0) in a dangerous section z0 of a rod should not be 

larger than destructive moment Мразр: 

  0x разрM z M . (1) 

A destructive moment for limited plastic deformation is given by the ratio  
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where T
txS  is a static moment in relation to the neutral axis х of a part of a transverse (danger-

ous) section in the area of the stretched fibers where stresses are equal to the yield point ζТ 

(absolute magnitude): 
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where b(y) is the width of a cross section of a rod; T
sxS  is a static moment in relation to the 

neutral axis х of a part of a cross (dangerous) section in the area of compressed fibers where 

stresses are equal to the yield point ζТ (absolute magnitude): 
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0
Yh  is the height of the elastic core in a dangerous section of the rod; Y

xI  is an inertia moment in 

relation to the neutral axis х of a part of a cross (dangerous) section corresponding with the elas-

tic core:   
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An increase in the carrying ability of the bent rod calculated according to the destructive 

moment is evaluated using the coefficient  

 0

разр

T
x

M

M
  , (3) 

where 
0

T
xM  is a bending moment that causes yield in the fibers in the dangerous section:   

0
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0xI  is an inertia moment of the transverse section with respect to the central axis; h is the 

height of the cross section.  

The coefficient β shows how many times loading increases by since the moment yield 

occurs in the fibers of the dangerous section till its carrying ability is completely gone.  

In order to calculate the functions hY(z) of the height of the elastic core, the equation of 

the internal moment is used  
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 (4) 

bending moment created by the external moment Mx (z).  

Here 
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The boundary of the elastic and elastic plastic areas of the rod zT is found using the condition 
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where Mx (z
T) is a bending moment created by the internal loading.  

Normal stresses in the cross section of the rod experiencing elastic plastic bending in the area 

of plastic deformations, i.e when  
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are equal to the yield point: 

  ,z Tz y   . (6) 

In the area of plastic deformations for when  
1

2
Yy h z , normal stresses are given by the 

ratio  
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Tangential stresses in the plastic area of the cross section equal zero: ηzy = 0. 

Tangential stresses in the area of elastic plastic deformations at the points of the cross section 

experiencing plastic deformations are  
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Tangential stresses in the area of elastic plastic deformations at the points of the cross section 

experiencing elastic tensile deformations are given by the formula   
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where  T
sA z  is the area of the compressed plastic part of the cross section;  , ,Y отс

sxS z y  is a 

static moment of the cut off compressed elastic part of the cross section with respect to the 

neutral axis х;  , ,Y отс

txS z y
 
is a static moment of the cut off stretched elastic part of the cross 

section with respect to the neutral axis х;  Y
sxS z  is a static moment of the compressed elastic 

part of the cross section with respect to the neutral axis х, with 
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If a rod under transverse elastic plastic bending is experiencing an evenly distributed load q, 

there are normal stresses ζy(z, y) on horizontal areas. In the plastic area of the compressed part 

of the cross section stresses on the horizontal areas are given by the ratio  
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Normal stresses on the horizontal areas within the elastic core are calculated by the formula:  
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Stresses on the horizontal areas within the plastic area of the stretched part of the cross section 

are  
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In the formulas (10)—(12)  ,Y
отсA z y  is the area of the cut off stretched part of the elastic 

core of the cross section;  YA z  is the area of the elastic core of the cross section, with 
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The residual normal ост

z , targential ост

zy  and normal stresses on the horizontal areas ост

y  in 

the cross section of the rod in the plastic deformation area following its complete loading is 

determined using algebraic sum of the corresponding stresses      , ,   , ,   ,z zy yz y z y z y    
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A deflection curve of elastic plastic deformed rod is determined using joint integration of the 

differential equation of the axis of the deflection rod in the area of elastic deformations 
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and a differential equation of the deflected axis of the rod in the area of elastic plastic defor-

mations:  
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where Е is an elasticity modulus of the rod material.  

Integration constants are determined using the con-

dition of continuity and smoothness of the deflected 

axis of the rod at the adjoining ends of the elastic 

and elastic plastic areas. 

The differential equation of the deflected axis of the 

rod in the area of elastic plastic deformations fol-

lowing its complete unloading is given by the ratio  
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Residual bends in the elastic plastic deflected axis 

following its complete unloading are calculated by 

the integration of the sum of the differential equa-

tions (16) and (18) under the condition of continuity 

and smoothness of the deflected axis of the rod of 

the elastic and elastic plastic areas and conditions at the supports.  

2. Example 

Let us consider a steel two-support rod under a flat transverse elastic plastic bending (Fig. 1). 

The cross section of the rod is shaped like an equal double tee (Fig. 2). The carrying ability of 

the rod needs to be determined for limited plasticity as well as the boundary of the elastic and 

plastic deformations, residual stresses in the rod following its completed unloading, deflected 

axis of the rod and residual bends in the rod following its complete unloading. The rod material 

operates according to the ideal Prandtl curve.  

The original data are as follows: 

- length of the rod: l = 6.0 m; 

- sizes of the cross section: h = 0.40 m; b = 0.025 m; an = 2b; av = 2b; bn = 3b; bv = 2b; 

 
 

Fig. 1. Schematic of the rod 
 

 
 

Fig. 2. Cross section of the rod  
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- height of the elastic core in the dangerous section: h0 = h – 2(an+av) = 0.2 m; 

- yield point: ζT = 240·10
6 Pа; 

- modulus of elasticity: E = 200·10
9 Pа; 

- safety factor: k = 1.2. 

Furthermore, the results of the solution of the problem in MathCAD are presented.  

A bending moment when stresses in the fibers reach the yield point MT = 3.271·10
5 Nm. A 

destructive moment is Mразр = 4.208·10
5 Nm.  

Therefore β = Mразр / MT = 1.287. A destructive load as a concentrated force acting on the rod 

halfway through the span is  

54
2,806 10разрM

F
l

    N. 

The boundaries of the elastic and elastic plastic areas of the rod in this case are determined by 

the coordinates zлев = 2.332 m, zправ = 3.668 m based on the ratio (5). 

A destructive load as an evenly distributed load acting on the entire rod is  

4
2

8
9,352 10разрM

q
l

    N/m. 

The boundaries of the elastic and elastic plastic areas of the rod are determined by the coordi-

nates zлев = 1.584 m, zправ = 4.416 m. 

In finding the boundary is identified between the areas of the elastic and plastic deformations, 

static moments of compressed and stretched plastic areas of the cross section as well as an 

inertia moment of the elastic core with respect to the neutral axis as a function of the height of 

the elastic core.  Based on the geometry of the cross section, three cases were considered: a) 

the boundary of the elastic and plastic areas is within the wall of the cross section; b) the 

boundary of the elastic and plastic areas is within the internal wall of the cross section; c) the 

boundary of the elastic and plastic areas is within the external wall of the cross section. Then, 

specified by the height of the elastic core hY, based on the formula (4) the corresponding 

coordinate z of the boundary between the areas of elastic and plastic deformation.  
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The boundary between the areas of elastic and elastic plastic deformation along the rod is 

shown in Fig. 3. 

a) 

 

b) 

 

Fig. 3. Boundary between the areas of elastic and plastic deformation:  

а) when the rod is loaded with a concentrated force;  

b) when the rod is loaded with an evenly distributed load 

According to Fig. 3, the following can be concluded:  

1. The shape of the cross section of the rod has an effect on the length of the area of 

plastic deformations; 

2. Under a distributed external loading, the length of the area of plastic deformations 

is larger than the length of the area of plastic deformations under a concentrated force.  

The analytical expression for a function hY = hY(z) of the height of the elastic core was de-

signed using a cubic spline interpolation. Fig. 4 shows the graphs hY = hY(z), approximated by 

cubic splines.  
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a)  

 

b) 

 

Fig. 4. Graph hY = hY (z): а) when the rod is loaded with a concentrated force;  

b) when the rod is loaded with an evenly distributed load 

Fig. 5 shows curves of normal stresses  z y  and curves of residual stresses  ост

z y  in the 

dangerous cross section of the rod. 

It should be noted that normal stresses in the dangerous section when the rod is under a con-

centrated force and normal stresses in the dangerous section when the rod is loaded with a dis-

tributed load coincide.  

а) 

 

Fig. 5. Curves of normal 

stresses in a section z = 3.0 m of 

the rod: а) curve of normal 

stresses  z y ; b) curve of resi-

dual normal stresses  ост

z y  
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b) 

 

Fig. 5 (ending). Curves of nor-

mal stresses in a section z = 3.0 

m of the rod: а) curve of normal 

stresses  z y ; b) curve of resi-

dual normal stresses  ост

z y  

 

Tangential stresses in the area of elastic plastic deformations occur only in the area of the 

elastic core; in the area of plasticity tangential stresses is zero. When the rod is loaded with a 

concentrated load, as the section under consideration approaches the dangerous section, tan-

gential stresses are on the rise, while the area of tangential stresses narrows down to the 

height of the elastic core. In the immediate vicinity of the dangerous section, tangential 

stresses start decreasing and become zero in the dangerous section itself.  

Fig. 6а shows curves of tangential stresses in some cross sections when the rod is loaded with 

a concentrated force. When the rod is loaded with a distributed force, tangential stresses in the 

area of elastic plastic deformations decrease as the section under consideration approaches the 

dangerous section, while their area narrows down to the height of the elastic core.  

Fig. 6b shows curves of tangential stresses in the cross sections when the rod is loaded with 

an evenly distributed load.  

Curves of residual tangential stresses designed in cross sections where elastic core crosses the 

intersection of the external and internal shelves are in Fig. 7. A curve of normal stresses on 

horizontal areas in the area of elastic deformations (z = 1.584 m) is in Fig. 8а, in the area of 

elastic plastic deformations at (z = 2.95 m) is in Fig. 8b. A curve of residual normal stresses 

on horizontal areas in a section in the immediate vicinity of the dangerous section of the rod is 

shown in Fig. 9.  

Curves of bends were designed by means of the immediate integration method for the diffe-

rential equation of the bent rod as well as curves of residual bends of the rod following its 

complete unloading. 
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Three areas were identified on the rod: left and right elastic areas and middle one – elastic 

plastic ones. As the rod is loaded with a concentrated force, the left elastic area is an interval  

(0 ≤ z ≤ zлев = 2.332m), elastic plastic area is (zлев = 2.332 m ≤ z ≤ zправ = 3.668 m), the right 

elastic area is an interval (zправ = 3.668m≤ ≤ z ≤ l = 6.0 m).  

As the rod is loaded with an evenly distributed load, the left elastic area is an interval 

(0 ≤ z ≤ zлев = 1.584 m), the elastic plastic area is (zлев = 1.584 м ≤ z ≤ zправ = 4.416 m), the 

right elastic area is an interval (zправ = 4.416 m ≤ ≤ z ≤ l = 6.0 m). 

 

а) 

 

Fig. 6. Curves of tangential 

stresses in the sections:  

а) when the rod is loaded 

with a concentrated force: 

2,332z   m is a continuous 

line (area of elastic deforma-

tions);  

2,782z   m is a dotted line 

(intersection of the internal 

and external shelves);  

2,998z   m is a dot line;  

2,990z   m is a chain line;  

b) when the rod is loaded 

with an evenly distributed 

load:  1,584z   m is a conti-

nuous line  (area of elastic 

deformations);  

2,192z   m is a dotted line 

(intersection of the internal 

and external shelves);  

2,800z   m is a dot line  

 

 

 

b) 
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а) 

 

Fig. 7. Curve of residual tan-

gential stresses: 

а) in the section 2,782z  m 

when the rod is loaded with a 

concentrated force; 

b) in the section 2,192z   m 

when the rod is loaded with an 

evenly distributed load  

 

b) 

 

 

а) 

 

Fig. 8. Curve of normal stresses 

on horizontal areas: 

а) in the section 1,584z   m;  

b) in the section 2,950z   m 
b) 

 

 

When the curves of bends were designed, a combination of differential equations (16) 

and (17) were integrated. When the curves of residual bends were designed, a combination of 

differential equations (16) and (18) was integrated.  
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Constant integrations were determined according to the conditions of continuity and 

smoothness of the deflected axis at the intersections of the areas. 

 

 

Fig. 9. Curve of residual normal 

stresses on horizontal areas in the sec-

tion 2,950z   m 

 

Fig. 10 depicts the curves of bends when the rod is loaded with a concentrated load. The 

curves of bends when the rod is loaded with an evenly distributed load are in Fig. 11. Fig. 

12 shows the curves of residual bends following a complete loading. 

 

а) 

 

b) 

 

Fig. 10. Curves of bends when the rod is loaded with a concentrated force:  

а) curve of bends corresponding with the stresses in the fibers which are equal to the yield point, 

the maximum bend Vvax = -0.015 m b) curve of bends corresponding with the plastic hinge, maximum 

bend Vvax = -0.021 m 
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а) 

 

b) 

 

Fig. 11. Curves of bends when the rod is loaded with an evenly distributed load:  

а) curve of residual bends when the rod is loaded with a concentrated load,  

maximum bend Vvax = -0.0013 m; b) curve of residual bends when the rod is loaded with evenly distri-

buted load, maximum load Vvax = -0.0051 m 

Comparing Fig. 10 and 11, it is evident that when the rod operates at the elastic 

stage, its bends caused by a concentrated force and evenly distributed load are not consi-

derably different. When the rod is under elastic plastic bending, its bend under an evenly 

distributed load is larger than a bend caused by a concentrated force. The analysis of 

Fig.12 concludes that residual bend of the rod loaded with an evenly distributed load is 

considerably higher than residual bend caused by a concentrated force. 

а) 

 

z 

Fig. 12. Curves of residual bends: а) curves of residual bends when the rod is loaded with 

a concentrated force, maximum bend Vvax = -0.0013; b) curves of residual bends when the 

rod is loaded with a evenly distributed force, maximum bend Vvax = -0.0051 m 
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b) 

 

z 

Fig. 12. Curves of residual bends: а) curves of residual bends when the rod is loaded  

with a concentrated force, maximum bend Vvax = -0.0013; b) curves of residual bends when the rod is 

loaded with a evenly distributed force, maximum bend Vvax = -0.0051 m 

 

Conclusions 

1. The results of a numerical solution show that the use of information technology, par-

ticularly mathematical PC software packages allow one to deal with analytically complex so-

lutions.  

2. The rod was first calculated experiencing elastic plastic bend, cross section of which 

is different from the rectangular one whose width changes discretely along the height of the 

section. 

3. The results detailed in the article can be made use of while dealing with rod systems 

considering plastic deformations. 
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