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Statement of the problem. We consider the use of the finite element method in the problem of 

contact interaction of a thing loaded plate disposed on the Boussinesq’s elastic half-space. The 

novelty of our setting is in the loading function which is supposed to be continuous and linear on 

every element of some contact region triangulation. 

Results. We derive new formulas of calculation of the corresponding flexibility matrix for the 

Boussinesq’s elastic half-space loaded by a piece-wise linear net function. The application of polar 

coordinate system in calculations connected with a net element makes these formulas new and 

more convenient in applications. Furthermore we use these formulas in the model of the 

interaction of the previous half-space and absolutely smooth punch loaded on its surface. 

Conclusions. We suggest new effective formulas for the calculation of flexibility matrix in the 

case of piece-wise linear net loading function. The developed method is applicable to the 

calculation of plate deformations when it is disposed and loaded on the elastic half-space. This is 

demonstrated by investigation of 3D contact interaction between elastic half-space and absolutely 

smooth punch. 
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Introduction 

According to the known approach [1—3] accepted in modelling interaction of a slab placed in 

the plane XOY of a rigid foundation under a load p(x, y), the slab is considered in isolation and 

the foundation is replaced by its force reaction q(x, y). In this case considering the hypothesis of 

Kirchhof-Lyav bending of a slab should agree with the following biharmonic equation: 
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supplemented by some boundary conditions. Here W(x, y) is a vertical displacement of a 

middle surface of a slab and the slab itself can be equalled with this two-dimensional surface. 

Due to the complexity of a task at hand, particularly if a slab is a two-dimensional area of a 

non-standard shape, the solution is possible only using numerical methods. The main 

approaches in this case are either the finite difference method [2] or the finite element method 

[1, 3]. In both cases the most critical stage of the solution is determining the response of a 

foundation during its contact with a slab.  

At this stage a certain model of an elastic foundation describing a connection between normal 

displacements W(x, y) of a half-space surface and normal efforts acting on it is applied. This 

connection is specified as an integral operator  

 
( ) ( , ) ( )

D

W M K M N q N dN  ,  (2) 

whose nuclear is critical to the model of elastic foundation. The Boussinesq nuclear  is most 

common to use [1, 3]: 
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which specifies a model of a homogeneous elastic half-space. We are going to look at it 

further on in the paper.  

1. Problem of reducing a reaction of an elastic foundation to the nodes of a finite element 

discrete model of a slab. In a numerical solution of the above task of an elastic foundation 

instead of the function W(x, y) of two variables its discrete approximation in the nodes of 

finite difference and finite element grid. In both cases on a slab surface of a foundation 

reaction should also be represented by a system of forces applied in the nodes of a 

corresponding grid. It is approximately achieved by considering another so-called dual grid 

[4—6] on the same two-dimensional area [4—6]. Each of its cells has a node of the original 

grid. Approximately applying the foundation reaction which is constant within each cell of a 

dual grid and choosing the grid itself so that the nodes of the original grid were in the gravity 

centres of the cells, the distribution of a reaction of a foundation along the nodes of the 

original grid can be fairly accurate which implements a discrete model of a slab. After that a 

slab is considered in isolation from a foundation. Besides the boundary task for the equation 
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(1) it is necessary to consider ordinary equations of balance of a solid body. It is used in [2] 

and some other papers. 

However, this method is hard to use for nodes at the boundary of a slab and does not quite 

account for a quick growth of a foundation reaction at the boundary. In [1] for the finite 

element method on a triangular grid a piecewise-linear (linear within each triangular element) 

approximation of a foundation reaction. Due to that we need to reduce a variable load 

distributed along a triangular surface to three forces applied to the tops of a triangle. It is 

usually done by dividing the total load into three equal parts or reducing a load calculated 

using an adjacent third part of a triangle into its tops.  

In this paper we suggest that a small triangular element of dividing a slab as an absolutely 

solid body and replace a load distributed along its surface with three forces applied at its 

tops so that they were equivalent to a load in the balance equations. I.e. the sum and both 

moments of these forces (the element is the plane XOY) should be the same as those of a 

distributed variable load.  

When a variable is in the plane XOY, the load is specified by a linear function of the density 

Z = aX + bY + C with values Z1, Z2, Z3 in the first, second and third tops of a triangle 

corresponding with the concentrated forces can be easily calculated using the formulas  

1 (2 1 2 3) /12,

2 ( 1 2 2 3) /12, 

3 ( 1 2 2 3) /12,

P Z Z Z S

P Z Z Z S

P Z Z Z S

  
  
  

 

where S is the area of a triangle. 

Furthermore in order to determine the final force of a foundation reaction in the i-th node of a 

triangular node, the contribution of each triangle into the node having it as its top needs to be 

summed.  

2. Flexibility matrix of an elastic foundation. Let there be some triangulation of a contact 

area of a slab and foundation with nodes at {Мi}, i = 1, 2, …, N. Let us replace a variable 

along the surface of a foundation reaction q(x, y) in Formula (2) by its piecewise-linear 

approximation h(x, y) on the triangular grid of dividing a contact area. Remember that within 

each element of division of h(x, y) is simply linear. Then within such functions it is natural to 

consider the basis ei(x, y) connected with the nodes Мi of a triangular grid. The elements of 

the basis are pyramidal functions:  

1) linear on triangulation elements; 

2) equalling 1 in the i-th node of the grid; 

3) with a carrier equalling joining of all the triangles having the node i as their top. 
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Then  

1
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This enables to consider h(x, y) as an N-dimensional vector h = {h(Mi)}. Let w={W(Mi)} 

denote an N-dimensional vector of bendings of the slab surface in the triangulation nodes of a 

contact area. There is a matrix B = (b (i, j)) enabling the calculation of w using h. This matrix 

is called a flexibility matrix of a foundation. As a result we have an equality w = Bh which 

yields a discrete equivalent of the Formula (2). 

Each element of the matrix has some certain physical significance. I.e. b(i, j) is vertical 

displacement of the node Mi under the effect of a pyramidal single load ej applied in the  

node Mj. 

Now for determining an element b(i, j) of the matrix the displacement at the node i caused by 

a pyramidal basis load ej applied at the node j needs to be calculated using the Formula (2). 

As ej is linear on each triangular element of the grid and is not equal to zero only for those 

element of division that contain the node Mj as the top, for determining b(i, j) double integrals 

just have to be calculated using a triangle of the product of the Boussinesq’s nuclear and a 

linear function.  

Some information about the formulas expressing b(i, j) can be obtained using [1]. However no 

comments and complexity of the formulas themselves make them hard to use. Conversely, the 

below formulas appear to be easy to use in designing computer calculations.  

3. Formulas for calculating elements of a flexibility matrix for the Boussinesq’s 

nuclear. Let there be a triangle  with the tops at the points A1, A2, A3 (anti-clockwise) 

and a linear function h(x, y) = Ax+By+C specifying a load on  and equaling 0 outside . 

Let us calculate the displacement of the surface of an elastic semi-space at S(x0, y0) caused 

by this distributed along  load h(x, y) = Ax+By+C. For that let us replace the start of the 

coordinate system at S. As a result h(x, y) becomes Ax+By+C0 where C0 = C+Ax0+By0. 

After that we move on to a polar system of the coordinates with a polar at S. 

Assuming h(M) at a random M(x, y) of the plane specified by the same formula 

    0 ,    ,h M h x y Ax By C     

we can write (Fig. 1) the following formula: 
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I.e. the calculation of the integral  comes down to calculating the integral using three 

triangles T1 = SA1A2, T2 = SA2A3, T3 = SA3A1 with the top at S. 

 

Fig. 1. Scheme of calculation  

of the integral using  

A1A2A3 in a polar coordinate  

system  

Let (p1, v1), (p2, v2), (p3, v3) be polar coordinate of the perpendicular foundations projected 

from S onto the opposite side of the triangles T1, T2, T3 respectively. According to the 

definition (p4, v4) = (p1, v1). Let u1, u2, u3 be polar angles of the tops A1, A2, A3 

respectively (according to the definition assume u4 = u1). 

Then in the polar coordinate system using a triangle Tk, k = 1, 2, 3 with the top at (polar) S is 
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Using the formulas 
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Therefore the displacement W at S using a linear load distributed along the triangle  is  
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. 

Finally the element b(i, j) of the flexibility matrix of the foundation equals the displacement in 

the node Mi of the basic load ej(x, y). Hence 

 ( , )
iM kb i j W  , 

where all the division triangles of a contact area with the node Mj as their top are summed. 

4. Results of a numerical experiment. Based on the formulas a calculation software was 

developed for elastic foundation slab which will be dealt with in a separate paper. Here we 

show the application of the formulas using the example of calculating a reaction of an elastic 

foundation as a rigid absolutely smooth punch is pressed into it vertically. For the solution we 

use the above discrete equivalent  

 Bh w   (3) 

the equations (2) where h = h(x, y) is piecewise-linear approximation of the density of a 

foundation reaction to be determined and  w is the deformation (heaving) of the foundation.  

Small deformations are definitely investigated that in this example coincides with the heaving 

of the same rigid punch and are thus equal a constant under the punch and zero outside it. In 

order to identify h we only need to solve a linear system (3) with the known right part w. 
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