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Statement of the problem. Currently in order to improve the reliability of heat supply technolo-

gies of small energy sources are being implemented, e.g., small heating plant based on internal 

combustion engines. The thermal energy in such installations is mainly produced by utilizing the 

waste heat of outflow smoke gases having a high temperature and thus heating the water in the 

tank. It is important to search for the most adequate mathematical models allowing one to deter-

mine the time of heating of a coolant in tank-accumulators. 

Results and conclusions. Mathematical models of unsteady processes of charging a storage tank 

used in a heating system are obtained. By means of identifying the models based on the minimiza-

tion of the functional Gauss implemented in the algorithms, the most appropriate mathematical 

model was established. A simplified mathematical model of the charging process of a storage tank 

was obtained allowing one to determine the water temperature with an error of less than 8 %. 

Based on mathematical modeling, analytical dependences for determining the temperature of a 

heat carrier at the inlet and outlet of the storage tank are identified. 

 

Keywords: heating, storage tank, heat transfer. 

 

Introduction 

One of Russia’s top priorities is to improve its central heating system but their performance 

has to be improved by means of utilizing non-conventional energy sources [18]. One of the 

promising technologies to employ in energy supply are thermal power stations that cater for 

heat and energy demands.  
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These stations have the capacity from several kilowatts to dozens of megawatts [5] making 

their application range extremely wide. There is currently data available on how they are be-

ing implemented [6], but there are no reliable mathematical models to allow the temperatures 

of heat-carriers to be calculated over the operation time. An important issue is controlling the 

capacity of these stations in order to maintain the temperature modes within thermal networks 

[4, 7—9]. It becomes necessary to regard a mathematical model of charging a heat accumula-

tor in the context of the operation in heat supply systems. Installing this kind of a device al-

lows the daily hot water consumption to be more even.  

1. Mathematical model of water heating using smoke gas 

Water is heated by means of contact of smoke gas with the wall of the pipes of a heat ex-

changer operating in the cross mode (Fig. 1). Due to a difference in the temperatures and thus 

water density natural convection occurs. While circulating continuously, the water gradually 

heats up to a necessary temperature (95 °С). The convection rate u is not known beforehand.  

 

 

Fig. 1. Scheme of charging  

of the heat accumulator  

 

Using the methods of engineering hydraulics [1] considering the movement mode (the Reyn-

olds number) a maximum possible rate of a natural movement of water in a heat transfer pipe 

was determined. It is umax = 0.424 m/sec. 

Let us write a mathematical model of heating water in the pipe whose side surface is thermal-

ly insulated and in the lower original part the heat is supplied from the smoke gas. At some 

point in time the rate of the outlet water flow in the pipe u can be assumed to be constant. The 

equation of heat conductivity is as follows 
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where T is the temperature, ºС; τ is the time, с; а is the coefficient of heat conductivity, 

m2/seс; u is the rate of water, m/seс. 

It is assumed that due to a small diameter of the pipe the temperature along the entire section 

is distributed evenly.  

Let us introduce the following initial and boundary conditions for solving the equation (1). 

Counting the temperatures from Т0, the initial condition is as follows  

    ,0 0         0T x x l   . (2) 

At the top end of the pipe х = l the heat is transferred into the environment according to the 

Newton-Richman law (in the tank) with the coefficient of heat conductivity α: 

 
x l x l
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    (0 < τ < 22 min), (3) 

where α is the coefficient of heat conductivity, J/(m2·sec);  is the coefficient of heat conduc-

tivity of water J/(m·sec). 

At the lower end of the pipe the water gets the heat from the smoke gas. 

Due to an uncertainty the following options for the boundary conditions [19] for х = 0 and 

х = l were considered: 
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where Т00 is an unknown temperature of the wall of the pipe for х = 0. 

The analytical solution of the equation (1) using the boundary and initial conditions (2) was 

obtained by means of Fourier’s method (dividing the variables): 
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where n  are positive roots of the resulting characteristic equation such as 

 /n ntg N u   , (5) 

where l
Nu





 is the Nusselt number. 

As seen from Formula (4), the calculation value Т(l, τ) depends on three parameters: T00,  

Nu and u. 

2. Identification of mathematical models 

The resulting model should be identified, i.e. such numerical values of its parameters should 

be determined so that the models would be in good agreement with the empirical data [15, 16]. 

The structural scheme of the calculation of the identification of the model is given in Fig. 2.  

Block 1. Introducing the original data: the initial temperature Т0; the coordinate х where the 

temperatures were measured at different points in time; the empirical time range τ(j) and a 

corresponding empirical temperature range Топ (j); the values of the parameters of the model: 

the convection rate u, the Nusselt number Nu, the temperature Т00. 

Block 2. The solution for the specified Nusselt number Nu of the characteristic equation (5) using 

the algorithm (9)—(10). 

Block 3. Calculating the temperature Т(l, τ(j)) for each point in time τ(j) using the calculation 

scheme (4). 

Block 4. Calculating the efficiency criterion, i.e. the Gaussian function that corresponds with 

the values of the parameters of the model u, Nu, T00. 

Block 5. Minimizing the Gaussian function by combining the methods of coordinate and 

shortest descend that includes planning the calculational experiment; going back to Block 1 to 

change the numerical value of the parameters u, Nu, T00; switching to Block 6 as soon as the 

minimum value is achieved [12, 14]. 

Block 6. Comparing the optimal value of the Gaussian function with a dispersion of the re-

producibility using the Fisher statistical criterion [20]. Introducing the mathematical model, 

i.e. identifying numerical values of the parameters u, Nu, T00, in case of efficiency. Switching 

to Block 7.  

Block 7. Printing the optimal values u, Nu, T00 and calculation values of the temperatures  

Т(х, τ(j)). Abandoning the mathematical model in case it is not efficient.  

In order to identify the roots μn we use Newton’s iteration [10]: 
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where using g and g' the following functions are denoted  

 ст ст
n ng tg Nu    (7) 

and its derivative  
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Fig. 2. Structural scheme of the identification of the mathematical model  
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Hence the iteration looks as follows  
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The initial μn is specified using the range  

   1 1
2nn n


        . 

The calculation ends as soon as the previously specified accuracy (error) ε is achieved, e.g., 

when the following equality holds true  

 0.000001нов ст     . (10) 

The criterion for the efficiency of the model was the Gaussian function that is the following 

for the first option  
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where the expression in the square brackets of the right part of the formula (4) is denoted us-

ing V(j) for the experimental value τ = τ(j); N is the number of the experimental measure-

ments τ(j) and Топ (j). 

Differentiating the function (11) using Т00 and equating the derivative to zero we get  
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The identification using the scheme (see Fig. 2) was performed for all the options of the mod-

el using the algorithmic language.  The results are presented below.  

Option 1. The characteristic equation is (5), the solution is (4). The optimal values are 

T00 = 12.64861, Nu = 0.9997329, u1 = 0, u2 = 0.3059973, u3 = 0.1100073. The Gaussian func-

tion is Ф = 737.8488. 

Option 2. The characteristic equation is  

.n nc tg N u     

The solution is 

       
2

2
2 2

00 2 2
1

, 1 2 1 cos sin
na

n n l
n

n n n

Nu
T x T x u e

lNu Nu

  



   
       

     
     for   u ≠ 0, 



Russian Journal of Building Construction and Architecture  

12 

   

2

2
2 2

00 2 2
1

, 1 2 sin
1

na
n n l

n n n

NuNu x
T x T xe

Nu l lNu Nu

  



   
     

      
     for   u = 0. 

The optimal values are T00 = –8.994679, Nu = 0.500151, u1 = 0, u2 = 0.30388, u3 = 0.101292. 

The Gaussian function is Ф = 3542.8. 

Option 3. The characteristic equation is  
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The solution is 
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The optimal values are 

00 1

2 3

16.00909,   1.04837,   0, 

0.309943,   0.0980236.

T Nu u

u u

  
 

 

The Gaussian function is Ф = 1092.762. 

Comparing three investigated options of the models we can see that the efficiency criterion 

(the sum of the roots of the deviations of the values of T(x, l) from the calculated ones) has the 

smallest value for the first variant: Ф = 737.8488. The values of the unknown parameters of 

the mathematical model should be as according to the results for this particular variant, i.e.  

00 1

2 3

12.69782,   0.9997329,   0,  0 7 min,

0.3059973,   7 22 min,  0.1100073,   22 92 min.

T Nu u t

u t u t

    
     

 

Therefore the model of heating the water in a heat-transferring pipe is obtained and identified.  

3. Calculating the temperature field in a storage tank 

In order to calculate the temperature of the water in a storage tank depending on the time and 

coordinate, we solve the equation of heat conductivity [11, 13]: 
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for a semi-restricted environment (z ≥ 0) for the boundary condition 
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 , (14) 

where f(t) is the temperature of the water in the pipe at the storage tank inlet (z = 0)  

calculated based on the initial temperature Т0. 

   0,0бТ z T . (15) 
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Further on the temperature of the water in a storage tank will be calculated based on Т0 so that 

at the initial point in time in the entire area  

  ,0 0бТ z  . (16) 

For the function f(t) the dependence is previously obtained (4). 
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In the equation (13) the rate of the water in the tank is denoted using uб: 

 б бu k u   (17) 

for a continuous flow  

 тр
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where Sтр, Sб is the area of the heat-transferring pipe and tank respectively, m2. 

Using the influence function [2] the solution of the equation (13) for the boundary condition 

(14) and the initial condition (16) is as follows 
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The integration (19) was performed numerically using the rectangle rule. The calculation of the 

temperature of the water in the tank according to the formulae (19), (4) is implemented using 

the algorithmic language. The statistical evaluation based on the Fisher criterion shows that the 

equation (19) is good at describing the dependence the temperature of the water at the storage 

tank outlet on the time. Note that the function f(t) as well as the experimental values of the tem-

perature of the water in the pipe at the tank inlet is approximated using the linear dependence  

  f t A Bt  , (20) 

where А = 75.968, В = 0.1391, for t > 22 min. 

Then for solving the task (13) for the conditions (14), (15) we use the analytical dependence ob-

tained [3, 17] by means of the operational method (the Laplace transformation) that is as follows:   

 

 

   

* *

* *

1
,

2 2 2

.
2 2 2

б

б

u z
б бa

б

u z
б бa

б б
б

z u t z u t
Т z t A Ф e Ф

at at

z u t z u tВ
z u t e Ф z u t Ф t

u at at

               
                

 (21) 



Russian Journal of Building Construction and Architecture  

14 

In (21) an extra error function is denoted using Ф*(х): 

    * 1Ф х Ф х  , (22) 
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The error function (the probability integral) (23) can be presented as an evenly convergent 

series:  
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The experiment of calculating the error function shows that for х < 1 in order to obtain the 

results with the error of less than 0.000001 in the expansion (24), only 3 members have to be 

sustained, i.e. to approximate this function using the following polynomial:  

  
3 52

3 10

x x
Ф x x

 
     

. (25) 

The results of the calculations of the temperature using the formulae (21) and (19) are no 

more than 8 % different from each other. 

Fig. 3 shows the results of theoretical and experimental studies of charging the heat accumu-

lator. 

 

Fig. 3. Change in the temperature of the water in the storage tank: 

I at the tank inlet; II at the tank outlet; 

 is a theoretical one;  is an approximated one 
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Conclusions 

1. The mathematical models to describe the convection heat exchange in the storage tank are 

developed. The optimal parameters when the model becomes sufficient for the experiment are 

obtained using identification.  

2. The best model for heating water in a heat-transferring pipe using a Gaussian function as a 

criterion.  

3. By means of mathematical modelling, analytical dependences to determine the temperature 

at the storage tank inlet and outlet are obtained.  

4. A simplified mathematical model for charging the heat accumulator is also obtained.  
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