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Statement of the problem. The paper looks at temperatures in a homogeneous half plane with  

a finite rectangular crack reaching the half plane boundary on the condition that the temperature at 

the half plane boundary as well as temperature and heat flow fluctuations in the crack are known.  

Results. A mathematical model is suggested that describes a stationary heat distribution in a homo-

geneous half plane with a linear crack reaching the half plane boundary for when the temperature at 

the half plane as well as temperature and heat flow fluctuations in the crack are known. The model 

was proved to be mathematically correct and the method of designing it as well as a whole range of 

related tasks was presented. The formula for presenting the solution of the model was obtained.  

Conclusions. The resulting formula can be employed to study the temperature distribution in a 

material experiencing cracking as well as in adjacent areas in order to evaluate its effect on heat 

distribution.  

 

Keywords: temperature, crack, heat flow, heat distribution, equation of stationary heat conductivity.  
 

Introduction. The problem of mathematical description of physical characteristics of materi-

als and defected structures is rather complex and multifaceted (see [6], [7], [12], [17], [18]). 

This is due to a great variety of materials, structure shapes, types and geometries of defects. 

One of the aspects of mathematical description of materials and defected structures is to study 

thermal processes occurring in them (see [3]––[5], [8]––[11], [13]––[16]).  
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Cracks and other defects cause extra redistribution of heat flows and thus extra strains. There-

fore mathematical models describing heat distribution in defected materials and structures can 

shed some light on the effect of defects on heat flows and temperature distribution.  

The paper sets forth a mathematical model for describing heat distribution in a homogeneous 

half plane with a linear crack to an angle to the half plane boundary. This article is a follow-

up of [3], [8], [9], [13] where heat distribution in functional and gradient materials with inter-

nal cracking has been investigated. Special attention is paid to proving that the suggested 

model is mathematically correct as unless it is, the outcome might not relate to the model and 

only to certain oftentimes rigid input data requirements.  

1. Statement of the problem. Major denotations. Let  be a fixed angle in the range of 0  

to 180 degrees, n  is a vector with the coordinates ( sin ;cos )  . 

Let us introduce the denotations:  2 2
1 2| , 0x x x         is the upper half plane, 

 2
1 2| cos where, sin ,  (0;| |)l x x t x t t l          is the interval in the upper half plane 

reaching the half plane boundary, l  is a line corresponding to l .  

Let us use   to denote the Laplace operator in 2  and 
k



 be a derivative in the direction to 

the vector k , i.e. if 1 2( , )x x x , 1 2( , )y y y , 1 2( ; )k k k , then 

2 2

2 2
1 2

( ) ( )( ) g x g xg x
x x

 
  

 
, 1 2

1 2

( ) ( ) ( )g x g x g xk k
k x x

  
 

  
, 1 2

1 2

( , ) ( , ) ( , )

x

g x y g x y g x yk k
k x x

  
 

  
. 

Let us look at the following task: 

 2( ) 0, \ ,u x x l       (1.1) 

  1 1 1( ), \ 0 ,u x x x      (1.2) 

 0( 0 ) ( 0 ) ( ),u x n u x n q x x l        , (1.3) 

 1
( 0 ) ( 0 ) ( ),u x n u x n q x x l

n n 
     

   
 

. (1.4) 

The task (1.1)––(1.4) describes a stationary heat distribution in the upper half plane with a cut 

in the line l  reaching the half plane boundary under the angle  . The line l  models crack-

ing. The equation (1.1) was obtained using the equation of stationary heat distribution in a 

sold body with no heat sources ( ( ) ( )) 0div k x gradu x   where ( )k x  is the coefficient of inter-

nal heat conductivity, at ( ) 0k x const  . The function ( )u x  determines the temperature at 
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the point x . The condition (1.2) specifies the temperature at the half plane boundary and the 

conditions (1.3) and (1.4) specify a temperature and heat flow fluctuation in the crack l  re-

spectively. 

The conditions (1.3) and (1.4) are interpreted as follows:  

0
( 0 ) ( 0 ) lim ( ( ) ( )),u x n u x n u x n u x n


 


            

0

( 0 ) ( 0 ) ( 0 ) ( 0 )limu x n u x n u x n u x n
n n n n

            
    

    
 

0
1 2 1 2

( ) ( ) ( ) ( )lim sin cos sin cos .u x n u x n u x n u x n
x x x x

      


             
             

 

Let A  be some set in   or 2 . ( )C A  and ( )kC A  denote a set of continuous functions and k  

times continuously differentiated on the set A  respectively. ( )
l

g x dl  denotes a curved first-

order integral of the function ( )g x  in the curved line l . 

We will further assume that the functions 0 ( ),q x  1( )q x  are from ( )C l  and the function 

1( )x  is from ( )C   and restricted in  . 

The solution of the task (1.1)––(1.4) will be the function ( )u x  from  2 2 \С l   which is a 

classical solution of the equation (1.1) for which the extra conditions (1.2), (1.3) and (1.4) are 

met. 

2. Reducing to the generalized equation. Let  2 2
1 2| , 0x x x         denote the lower 

half plane,  2
1 2| cos , sin ,  where (0;| |)l x x t x t t l           denote the interval in the 

lower half plane reaching the half plane boundary, l  denotes a line corresponding to l . 

Let us assume that the task (1.1)––(1.4) has a solution.  

Let us look at the function  

  1 2 2

1 2 2

( , ), 0,
( )

( , ), 0,
at

at
u x x x

u x
u x x x

   
     

 (2.1)  

where 1 2( ) ( , )u x u x x  is the solution of the task (1.1)––(1.4). 

Immediately using (1.1) and (2.1) we get that in    2 2\ \l l       

 ( ) 0.u x   (2.2) 
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Based on (1.3), at  0;| |t l . 

0

0

lim( ( cos sin , sin cos ) ( cos sin , sin cos ))

( cos , sin ).

u t t u t t

q t t


           

 


     


       (2.3) 

Let 1 ( sin ; cos )n     , 1 2( , )x x x l  , i.e. 1 cos ,x t   2 sinx t   , where  0;| |t l , 

then considering (2.1) and (2.3) 

 



1 10

0

0 0 1 2 1 20

lim( ( 0 ) ( 0 ))

lim( ( cos sin , sin cos ) ( cos sin , sin cos ))

( cos , sin ) ( , ) ( , ).

u x n u x n

u t t u t t

q t t q x x q x x




           

 





     

       

     

    (2.4) 

If (1.4) and (2.1) are used, similarly to (2.4) we get that at 1 2( , )x x x l   

 
  1 1

1
1 1

( 0 ) ( 0 ) ( ),u x n u x n q x
n n

    
 

 
 (2.5) 

where  1 1 21( ) ( , ).q x q x x     

The spaces of infinitely differentiated and finite functions in 2  and a set of linear and con-

tinuous functional over the space will be denoted as 2( )D   and 2( )D   (see [1]). 

Let l  be a line in 2 , ( )q x  from ( ),C l  1 2( ; )k k k . ( ) ( )lq x x  and ( ) ( )lq x x
k



 will denote 

the generalized functions from 2( ),D   acting according to the following rule: for any func-

tion ( )x  from 2( )D   

 ( ) ( ), ( ) ( ) ( )l
l

q x x x q x x dl     , 

( ) ( ) ( ), ( ) ( ) .l

l

q x x xx q x dl
k k
 

          

Calculating the generalized derivatives from the function ( )u x  in a traditional way conside-

ring (2.2), (2.4) and (2.5) we find that the function ( )u x  in the space 2( )D   will be the solu-

tion of the generalized equation  

 


0 0
1 2 1 1

1

( ) ( ) ( ) ( )
( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ,l l

l l

q x x q x x
u x x x q x x q x x

n n
 

    

 

 
     

 
       (2.6) 

where ( sin ;cos ),n     1 ( sin ; cos )n     , 2( )x  is the Dirac function (see [1]). 
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3. Designing the solutions for the generalized equation. In 2  a fundamental solution of 

the Laplace operator is the function 1 ln
2

x


 (see [2]), then the solution of the equation (2.6) 

is given by the formula  




0 0
1 2 1 1

1

1ˆ( ) ln *
2

( ) ( ) ( ) ( )
* 2 ( ) ( ) ( ) ( ) ( ) ( ) ,l l

l l

u x x

q x x q x x
x x q x x q x x

n n



 
    

 



  
    

   

             (3.1) 

where   is used for a convolution of the generalized functions (see [1]). 

Using the properties of the convolutions of the generalized functions (see[1]), we get that  

1

2 2
1 2 2

1 2 1 2 12 2
2 1 2

2 1
12 2

1 1 2

ln( )1 1 1ln *2 ( ) ( ) * ( ) ( ) * ( )
2 2

( ) .
( )

x

x x xx x x x x x
x x x

x y dy
x y x

    
  








    
 


 

        (3.2) 

As l  contains the support of the generalized function ( ) ( )lq x x , for any main function ( )x  

from 2( )D   

1 1( ( ) ( )* ln | |, ( )) ( ( ) ( ) ln , ( ) ( ))
2 2l lq x x x x q x x y x x y    
 

   , 

where ( )x  is a random function from 2( )D   that is such that ( ) 1x   in the vicinity of l  

(see [1]). Determining the direct product of the generalized functions (see [1]) we see that  

2

1 1( ( ) ( )* ln | |, ( )) ( ) ( ) ln ( ) .
2 2l x

l

q x x x x q x x y x y dyl   
 

  


           (3.3) 

Using the formula for derivative replacement we get that  

 
2 2

ln ( ) ln ( ) .y x y dy z x z dz    
 

 (3.4) 

From (3.3) and (3.4) we get that 

 
2

1 1( ( ) ( )* ln | |, ( )) ( ) ln ( ) .
2 2l x

l

q x x x x q x z x z dzl  
 

  


 (3.5) 

Changing the order of integration in (3.5) and redenoting z  by x  and x  by y  we get 

2

1( ( ) ( )* ln | |, ( ))
2

1 1( ) ln ( ) ( ) ln , ( ) .
2 2

l

x y
l l

q x x x x

q x z x dl z dz q y x y dl x

 


 
 



 
    

 
  


 



Russian Journal of Building Construction and Architecture  

30 

Thus 

 1 1ln | | * ( ) ( ) ( ) ln .
2 2l y

l

x q x x q y x y dl
 

   (3.6) 

Similarly (3.6) we find that  

 
ln( ) ( )1 1ln * ( )

2 2
l

y
xl

x yq x xx q y dl
n n


 
 


  . (3.7) 

From (3.1), (3.2), (3.6) and (3.7) we get 





2 1
1 1 12 2

1 1 2

0 0
1

( ) 1 1ˆ( ) ( ) ln ( )ln
( ) 2 2

ln ln1 1( ) ( ) .
2 2

y y
l l

y y
x xl l

x yu x dy q y x y dl q y x y dl
y x x

x y x y
q y dl q y dl

n n


  

 

 

 





     
 

   
 

 

  

 
   (3.8) 

In (2.4) and (2.5) it was noted that at 1 2( , )x x x l   

  
1 2 0 1 2 1 1 20 0 1( ) ( , ) ( , ); ( ) ( , ).q x q x x q x x q x q x x         

Considering the two last equalities (3.8) we get the following  

 

  2 1
1 12 2

1 1 2

0
1

( ) 1( ) ( ) ln | | ln | |
( ) 2

ln | |1 ln | |( ) ,
2 x

y
l

y
xl

x yu x dy q y x y x y dl
x y x

x yx yq y dl
n n


 














     
 

   
  

  

 


 (3.9) 

where 1 1 2 1 2( sin ;cos ), ( sin ; cos ), ( , ), ( , )n n y y y y y y               . 

4. Prove of mathematical correctness of the model. Formula for presenting the solution 

of the model. Note that at this stage we cannot argue that the function ( )u x  is the solution of 

the task (1.1)––(1.4) as it was obtained assuming that the task (1.1)––(1.4) is correct (that it 

has the solution). Let us prove that the function ( )u x  given by the equality (3.9) under the 

previously stated conditions in the function 1( ),x  0 ( ),q x  1( )q x  will be the solution of the 

task (1.1)––(1.4), i.e. the solution of the task (1.1)––(1.4) is given by the formula:  

 2 1
1 12 2

1 1 2

0
1

( ) 1( ) ( ) ln | | ln | |
( ) 2

ln | |1 ln | |( ) ,
2 x

y
l

y
xl

x yu x dy q y x y x y dl
x y x

x yx yq y dl
n n


 














     
 

   
  

  

 


          (4.1) 

where 1 1 2 1 2( sin ;cos ), ( sin ; cos ), ( , ), ( , )n n y y y y y y               . 
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In [4] it was shown that if the function ( )f x  is continuous in the entire real line probably ex-

cept a finite number of points where it has the discontinuity of the first kind, for any number 

of 0   the following ratio holds true:  

 
1

1

1 1 1
12 20

1 1

( ) ( 0) ( 0)lim ,
( ) 2

x

x

f y f x f xdy
x y







 






  


   (4.2) 

where 1 1 1 10 0
( 0) lim ( ), ( 0) lim ( ).f x f x f x f x

 
 

 
        

Let us show that the function ( )u x  given by the equation (4.1) meets the conditions (1.2).  

It is plain to see that  

 

2

2 2

2

1 1 20

2 1
1 12 20 0

1 1 2

00 1

( lim ( , )

( ) 1lim lim ( ) ln | | ln | |
( ) 2

ln | |1 ln | |lim ( ) .
2 x

x

yx x
l

yx xl

u x u x x

x y dy q y x y x y dl
x y x

x yx yq y dl
n n


 











 






  

     
 

   
    

 



       (4.3) 

The restrictions of the function 1( )x  and (4.2) mean that 

 

1

2 2

1

2 2
1 1

1

2
1

2 1 2 1
1 12 2 2 20 0

1 1 2 1 1 2

2 1 2 1
1 12 2 2 20 0

1 1 2 1 1 2

2 1
12 20

1 1 2

( ) ( )lim lim
( ) ( )

( ) ( )lim lim
( ) ( )

( )lim (
( )

x

x x

x

x x
x x

x

x
x

x y x ydy dy
x y x x y x

x y x ydy dy
x y x x y x

x y dy
x y x





 





 
 

 
 








 
 

 

 
 






 
   

   
   

 
 

 

 

 1).x

 (4.4) 

It is plain to see that 

 

 

 

2

2

10

1 0

2 2 2 2
1 1 1 2 1 1 2

1lim ( ) ln | | ln | |
2

1 ( ) lim ln | | ln | |
2

1 ( )(ln ( ) ( ) ln ( ) 0.
2

yx
l

yx
l

y
l

q y x y x y dl

q y x y x y dl

q y x y y x y y dl

















   

    
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It is plain to see that 

 
2

2

00 1

0 0 1

ln | |ln | |lim ( )

ln | |ln | |( ) lim 0.

x

x

yx xl

yx xl

x yx yq y dl
n n

x yx yq y dl
n n













   
  

  

   
   

  




 (4.6) 



Russian Journal of Building Construction and Architecture  

32 

Using (4.3)––(4.6) we find that  

2
1 1 2 10

( lim ( , ) ( )
x

u x u x x x


    , 

i.e. the condition (1.2) is met. 

Similarly using (4.2) we see that for the function ( )u x given by the equation (4.1), the condi-

tions (1.3), (1.4) are met. 

Immediately inserting the function ( )u x into the equation (1.1) we make sure that it is its  

solution.  

Conclusions. The paper looked into essential and urgent research issues related to mathemat-

ical description of heat distribution in defected materials and structures as well as determining 

how defects in materials and structures influence the temperature of materials and structures.  

A mathematical model is suggested that allows the temperature distribution to be identified in 

the half plane with a rectangular crack reaching the half plane boundary knowing the tempera-

ture at the half plane boundary and fluctuations of temperature and heat flows in the crack. 

Using the methods of the theory of generalized functions mathematical correctness of the 

model was proved and the formula the solution is given by was obtained.  

The resulting formula can be used for analyzing the behavior of the temperature in material 

with a crack including for identifying singularities in the adjacent areas as well as the effect of 

cracking on heat distribution. Note that the first of the summands in the formula of presenting 

the solution shows the temperature in the half plane with no cracking if the temperature at the 

boundary of the half plane is known while the formula itself can be generalized for a random 

smooth crack.  
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