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MODELLING OF HEAT TRANSFER PROCESSES IN THE ZONE  

OF HEATING PIPE LAYING AND IN INHOMOGENEOUS  

BUILDING ENVELOPES WITH THE USE OF CONFORMAL MAPPING METHOD 

Statement of the problem. Metal elements used in building envelopes increase durability, but no-

ticeably change value and nature of heat losses. The problem is to show the influence of metal ribs 

inside a flat wall on heat transfer process. The problem of determination of the temperature fields 

around heat conductor partially embedded in soil is also considered. 

Results. The calculation of heat transfer processes around heat conductor partially embedded in 

the wall (body) and in the inhomogeneous building envelopes with metal ribs was performed with 

the use of conformal mapping method. Simple and efficient method for modelling steady state 

processes of heat transfer in the area of heat conductor partially embedded in body and in inhomo-

geneous building envelopes with metal ribs. 

Conclusions. Obtained dependencies enabled us to calculate the most important feature of the 

product, namely coefficient of thermal and technical homogeneity. The tackled problems of heat 

transfer reveal the advantages of the conformal mapping method. 

Keywords: temperature field, heat flows, heating networks, inhomogeneous building envelope, heat transfer, 

conformal mapping method. 

Introduction 

An efficient way of tackling heat transfer problems is the conformal mapping method. One of 

the features that make this method stand out above the others is analytical functions of a com-
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plex variable. The values of analytical functions in a complex domain are largely determined 

by the values of the functions at the boundary of this domain. This exhibits the role of con-

formal mappings in addressing the heat transfer problems: it will suffice to find conformal 

transformations of the boundary of a complex domain for these transformations to map one 

domain onto the other. 

Analytical formulas which determine a conformal correspondence between the boundaries of 

the domain in question define the correspondence between heat flows and heat boundary con-

ditions. 

Heat transfer in the below domains of complex configuration can be calculated numerically. 

However, a more simple solution is obtained using the conformal mapping method. The ex-

amples of its use are discussed, in particular, in [1—3] and etc. 

1. Heat pipe partially embedded in the wall (body) 

In the process of laying heat networks, sometimes there arises a need to define a temperature 

field surrounding a part of a long heat pipe embedded into the wall (body). A problem like 

this might sound as follows: a part of the long pipe with the radius R  is embedded into the 

body whose boundary has a zero temperature. The angle between the boundary of the body 

and the tangent line to the circle of the pipe is   (Fig. 1). 

The temperature of the surface of the pipe T  is kept stable. Between the surfaces there are 

isolating points oiR oiR . It is necessary to find a stationary temperature field around the part 

of the pipe submerged into the body. 

The linear fractional function is like 

 o

o

Z iRW
Z iR





, (1) 

where  

cos sinZ x iy r ir      ,   

expW u iv i     ,   cosoR R  , 

maps the dashed area of the plane Z into the inside of the angle    of the plane W  (Fig. 2). 
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Fig. 1. Physical model 

and the coordinate system 

Fig. 2. Mapping of the examined area of the plane Z 

into the inside of the angle of the plane W 

 

Meanwhile zero isotherms and these of T  of the plane Z are mapped into the plane W  re-

spectively into an actual positive semiaxis and ray    . 

The temperature distribution inside this angle is given by the equation 

    , Tt W t     


, (2) 

where 

 arctg v
u

  . (3) 

Substituting (2) into (1) and removing the imaginary part of the denominator we get 

 
2 2 2

2 2 22
o

o o

x y Ru
x y yR R

 


  
, (4) 

 2 2 2

2
2

o

o o

xRv
x y yR R

 
  

. (5) 
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Combining the equations (3), (4) and (5) we write 

  2 2 2

2arctg o

o

xR
x y R

  
 

. 

Born in mind that  arctg arctg    ultimately we get 

    2 2 2

2, arctg o

o

xRTt z t x y
x y R

 
  

 

or 

    2 2

2 cos, arctg o

o

r RTt z t r
r R


  

 
. 

If the temperature of the body which is far enough from the surface of the pipe and the tem-

perature of the proper surface of the pipe is maintained respectively at 1t  and 2t  ( 1 2t t ), then 

the temperature field has the form 

  
 

1
22

2 1

, 1 2 cos cosarctg
cos

t r t r R
t t r R
   


   

. (6) 

The use of a conformal mapping makes the problem solution a great deal easier. Using the ex-

pression (6) we can find the temperature field around the pipe partially embedded into the body. 

A similar approach to thermal calculation of heat pipes built into a slab was utilized in [4]. 

2. Structure with metal ribs 

The introduction of metal parts into heat insulation products improves the strength of the 

structure but metal elements can also largely contribute to the magnitude and nature of heat 

losses. Below is the effect of metal ribs inside a flat wall with the thickness H have on heat 

transfer. The structure under investigation is borrowed from [5, 6]. 

Thin metal ribs are assumed to be highly heat conductive and be only of h height, therefore 

their temperature can be considered equal to that of metal sheets the wall is sheathed with (the 

ribs are attached to both sheets). The space between the sheath and ribs is filled with a heat 

insulation material with the heat conductivity coefficient of λ. The temperature of the envi-

ronment t2 and of the surface of the wall from the side of the ribs t1 is known. 
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Fig. 3 shows isotherms and heat current paths inside the ribbed wall. 

 

Fig. 3. Isotherm and heat current paths 

For the time being, following [7] external thermal resistance can be assumed to be a substitute 

for the value Н with the sum 

H L    
, 

where   is the heat emission coefficient in the environment. 

Then the heat transfer problem can be dealt with using first order boundary conditions for 

when the temperatures t1 and t2 are kept constant on the surface of a heterogeneous wall with 

the thickness L. 

The problem posed is efficiently solved by means of conformal mappings. The function that 

maps a ribbed flat wall into a homogeneous (Fig. 4) one has the form [3] 

 
1arccos cos

ch

a ZW h a
a

 
 

    
 

. (7) 

Here 

 Z x iy  , (8) 

H
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 ( , ) ( , )W u x y iv x y  , (9) 

where a  is the distance between the ribs. 

 
Fig. 4. Conformal mapping of the ribbed wall into a homogeneous one 

 

The transformation (7) maps the isotherm (y = L) of the plane Z into the straight line v = l of 

the plane W. 

Using the fundamental properties of conformal mappings we conclude that densities of heat 

flows passing through the areas between the isotherms t1 and t2 on both planes are identical. 

Then 

 1 2( )q t t
l


  . (10) 

Now substituting (7)—(9) and for the sake of simplicity assuming х equal to zero following 

the transformations we get 

 
2

2 2
0

1ln ch ch ch
2 ch

x
y L

a hl v L Lh a a a
a




   
       

. (11) 
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If we assume h = 0 and apply the known formulas 

2ch 1 shL L
a a
 

  , 

2 2ch sh expL L L
a a a
         

   
 

as a particular case of the equation (11), we have l = L. 

Let us now compare the densities of heat flows passing through the ribbed and homogeneous 

walls of the same thickness equals L. 

The density of the heat flow for the ribbed wall is determined by the equations (10) and (11), 

for the homogeneous wall without ribs it is defined by the formula 

 1 2q t t
L

 
  . 

Then 

   1 2

1 2

t tL lq q q t t
Ll l

           
 

 

 
2

2 211 ln ch ch ch
2 ch

a hL LhL a a a
a

 
    

         
 

 (12) 

or 

 100 %q q
q


  . (13) 

The thermal and engineering integrity of the structure can be determined using the formula 

 
*qr

q
 . (14) 

Therefore the equations (12) and (13) allow one to evaluate heat modes of the ribbed wall com-

pared to the smooth one (depending on the height of the ribs h and distances between them a). 
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In conclusion let us give a concrete example of that. 

The geometrical sizes of the ribbed wall are  

L = 0.20 m; h = 0.06 m; a = 0.07 m. 

The heat conductivity coefficient of the isolation layer is  

λ = 0.07 Watt/m0C;  

t1 = 20 0C and t2 = -25 0C. 

Then ∆q = 1.98 Watt/m2: 

100 11,2 %q q
q
 

   ,   0,89r  . 

Based on the numerical research, we obtained dependencies of the coefficient of thermal and 

engineering integrity r on the height of the ribs h and distances between them a (Fig. 5). 

 

Fig. 5. Dependency of the coefficient of thermal and engineering integral r on the height of the rib h 

 

Conclusions 

1. We have sought to present a simple and efficient method of modeling stationary heat 

transfer processes within a heat pipe partially embedded into the body and within a 



Issue № 3 (15), 2012 ISSN 2075-0811 

25 

non-homogeneous structure with metal ribs. We have designed the equations that de-

scribe temperature fields in the body surrounding a heat pipe partially embedded into 

the ground. 

2. The use of the conformal mapping method allowed research into the effect metal ribs 

within heat insulation products have on the magnitude and nature of change in tem-

perature and heat flows. 

3. The resulting dependencies enabled us to calculate the critical characteristic of the 

product. This is the coefficient of thermal and engineering integrity of the structure. 

The graph was presented that exhibits the dependency of the coefficient of thermal 

and engineering integrity on the height of the ribs and distances between them. 

4. The heat transfer problems discussed describe the strengths of the conformal mapping 

method. The solution of other problems associated with transfer in other boundaries 

can be found in the identical fashion since the methods for designing solutions of this 

type are not fundamentally different. 
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