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JOINT MODELLING OF HEAT AND MASS TRANSFER 

AND AERODYNAMIC PROCESSES IN EVAPORATIVE WATER COOLERS 

Statement of the problem. The implementation of the mathematical model of heat and mass transfer 

in water evaporative coolers shows that a decrease in the cross-section of the nozzle results in a more 

intense heat and mass transfer. On the other hand, it leads to an increasing aerodynamic resistance of 

the air path. Therefore joint modeling of heat and aerodynamic processes is needed. 

Results and conclusions. The model connecting pressure and flow characteristics of ventilator 

units and aerodynamic characteristics of evaporative water coolers is examined. This model makes 

it possible to determine the air flow rate depending on the geometrical parameters of a specific 

nozzle. The conjunctive use of this model and the heat and mass transfer model allows one, in con-

junction with the heat and mass transfer model, to define these parameters in order to obtain the 

maximum cooling performance. 

Keywords: water evaporative nozzle, cooling performance, mathematical model, heat and mass transfer, aero-

dynamic resistance. 

 

Introduction 

As was shown in the paper [5], water evaporative coolers have proven best at attaining speci-

fied temperature and humidity parameters of the air. 

The basic factors to affect the performance of evaporative water coolers are the parameters of 

the outside air (temperature, humidity), factors to be reckoned with in this particular climate 

zone (air flow determined by the type of a ventilator unit and resistance of the air path which 

is a dependent factor), geometrical parameters (the length of nozzles and cross-section of the 
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nozzles) [3]. The result of the geometrical parameters is the secondary indicators: cooling 

flow and intensity. Their values are crucial to the cooling performance of the installation [1]: 

Q c G t     , 

which is affected by the volumetric air flow in the nozzles of the evaporative water cooler G, 

m3/sec, and cooling intensity, Δt, оС, which is the difference between the inlet and outlet air 

temperature. In the Formula С is the specific air thermal conductivity, J/(kg∙К); ρ is the air 

density, kg/m3. 

The dependence of the value of cooling performance on the air flow and cooling intensity is 

pretty much obvious. The air flow rate under specific characteristics depends on the air path 

resistance which reveal its geometrical features (length and cross-section of the nozzles, nar-

rowing, expansion). Taking into account the resistance and thereby pressure losses in the air 

cooler induces us to look at the peculiarities of how the air moves from the heat exchange 

tower standpoint. 

The greatest value of the function Q corresponds to the maximum efficient operation mode of 

the cooler. Until recently there has been a speculation that [4] the cooler should optimally be 

configured to have the outlet air temperature tk equal to that of the outside air as read from a 

wet bulb thermometer tnm. This being the case, the cooling intensity is maximum and relative 

humidity of the cooled air is 100 %. 

The performed research suggests that the dynamics of temperature drops of the cooling air 

along the nozzles is not constant. At the start of the area the air temperature drops sharply ow-

ing to the intense air evaporation off the surface of the baffle plates. Then the intensity of heat 

and mass transfer processes goes down as the air is saturated with moisture and ultimately 

these are not of much significance (Fig. 1). 

At the same time transport resistance of the nozzle which causes the air flow rate and thereby 

the cooling performance to drop is directly proportional to the length of the nozzles of the 

cooler. We have thus suggested the length of the cooling nozzle be reduced, which will lead 

to a lower cooling intensity but allow a higher air flow rate by reducing aerodynamic resis-

tance. In order to perform quantitative assessment of these changes in the suggested mathe-

matical model [5] it is necessary that aerodynamic resistances are taken into consideration. 
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Fig. 1. Dynamics of the air temperature drops across the cooler 

1. Aerodynamic resistance 

During the operation of the evaporative water cooler as the air flow travels and faces the 

transport resistance Ртр, abrupt narrowing Рc, abrupt expansion Рr [2]. Considering the laminar 

mode of vapor and gas mix travelling inside the cooler as well as the shape of the nozzle and 

according to the Darcy Weisbah equation we get 

6
2217 10тр

L VР
h


  , 

where L is the length of the nozzles of the cooler; V is the air velocity; h is the cross-section of 

the nozzle. 

Local changes in the geometry of the nozzle bring about local resistance which is invariably 

accompanied by pressure loss. The Darcy Weisbah equation is used to determine pressure loss 

incurred during the local resistance 

2

2
VР  

    , 

where  is the coefficient of local losses. 

One type of local resistance occurs during abrupt narrowing of the flow which takes place at 

the inlet of the nozzle 

2

2с с
VР 

    , 

where the resistance coefficient ξс is defined using Table 1. 
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Table 1 

Resistance coefficient during abrupt narrowing 

F0 / F1 
Re 

102 2102 5102 103 2103 4103 

0.1 1.30 1.04 0.82 0.64 0.50 0.80 

0.2 1.20 0.95 0.70 0.50 0.40 0.60 

0.3 1.10 0.85 0.60 0.44 0.30 0.55 

0.4 1.00 0.78 0.50 0.35 0.25 0.45 

0.5 0.90 0.65 0.42 0.30 0.20 0.40 

0.6 0.80 0.56 0.35 0.24 0.15 0.35 

Approximating the table data we conclude that this coefficient is as follows 

0.4 0

1

5.6 Re 0.12 0.6 0.5с
F
F

  
       

 
. 

Here F0 and F1 are a bypass cross-section and air path cross section respectively. During ab-

rupt expansion which occurs at the outlet of the nozzle 

2

2r r
VР 

    , 

where the resistance coefficient ξr is defined using the Table 2. 

Table 2 

Resistance coefficient during abrupt expansion 

F0/F1 
Re 

102 2102 5102 103 2103 3.3103 

0.1 1.70 1.65 1.70 2.00 1.60 0.81 

0.2 1.40 1.30 1.30 1.60 1.25 0.64 

0.3 1.20 1.10 1.10 1.30 0.95 0.50 

0.4 1.10 1.00 0.85 1.05 0.80 0.36 

0.5 0.90 0.75 0.65 0.90 0.65 0.25 

0.6 0.80 0.60 0.40 0.60 0.50 0.16 
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Approximating the table data we conclude that this coefficient is as follows 

9 2 0

1

427117 10 Re 0.5 1.6
Re

F
F

r е
                . 

Pressure loss is associated with the velocity in the narrow part, i. e. is an average velocity in 

the nozzles. 

The mathematical model of aerodynamic resistance is a transcendent equation. Its right-hand 

side is the sum of resistance encountered in the way of the airflow and the left-hand side is the 

pressure and flow characteristics of the ventilator being used: 

1 2( ) ( , , )P G P G h l . 

The solution of this equation under specific geometrical parameters of the cooler allows the 

determination of the air flow rate. The joint solution of the mathematical model of heat and 

mass transfer set forth in [5] and the above model of aerodynamic resistance allows one to 

determine how temperature and humidity parameters of the cooled air depend on the geome-

trical sizes of the cooler. 

2. Implementation of the joint model 

Let us look at how the length of the nozzle and width of the nozzles affect the cooling system 

performance. A cooler consisting of the ventilator unit ВО-14-320-6.3 fitted with the engine 

АИР71А6 was chosen as a sample. Its pressure and flow characteristics are given by the ratio 

0.029645 4.64
1( )

GeP G e   . 

The nozzle is 0.95×0.95 m vertically and horizontally. The parameters of the outside air are: 

incoming temperature — tн = 30 оС; relative humidity — н = 40 %. 

In the initial area cooling intensity is strongly on the rise as the operating area of the baffle 

plates increases. Then, after reaching a certain value, its growth flatlines (Fig. 2). The air flow 

rate is inversely proportional to the growth of the nozzle length. This is due to increasing 

transport resistance of the cooler (Fig. 3). 

The mutual influence of cooling intensity and air flow on the cooling performance is the rea-

son behind its curve behaving in a certain way. The cooling performance rises as the length of 
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the nozzle rises. The cooling performance goes down as the length increases further after 

reaching a certain maximum (Fig. 4). 
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Fig. 2. Dependence of cooling intensity on the length of the nozzle  

while using the axial fan ВО–14–320–6.3 
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Fig. 3. Dependence of air flow rate on the length of the nozzle  

while using the axial fan ВО–14–320–6.3 

It is noteworthy that the cooling performance takes much longer to drop than to grow. This 

behaviour of the curve is due to a less intense increase in aerodynamic resistance owing to a 

drop in the air velocity. 

The above means that an increase in the length of the nozzle of the cooler over a certain value 

results in decreasing cooling performance and an unreasonable rise in the relative humidity of 

the cooled air. 
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Fig. 4. Dependence of the cooling performance  

of the nozzle on its length 

 

Conclusions 

We have thus designed a mathematical model that allows the determination of the air flow 

rate in the ventilation system fitted with evaporative water coolers under the known pressure 

and flow characteristics of ventilator units.  

This model in conjunction with the heat and mass transfer model in the nozzles of the nozzle 

assists in finding most optimal geometrical parameters of coolers depending on the construc-

tion solution of the ventilation systems of a variety of industrial facilities. 
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