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Statement of the problem. A scheme of a flat elastic statically determined beam girder of a peri-

odic structure is proposed. Both belts of the girder are rectangular, the lattice consists of stands and 

braces. Efforts in the rods, bend and a horizontal displacement of a moving support of the girder 

under an evenly distributed load are determined. 

Results. Using the Moore integral, polynomial analytical dependencies are obtained for bends of 

the girder and critical efforts in certain rods on the number of panels, size and load. While genera-

lizing particular solutions for a random number of panels, the inductive method is employed. It is 

noted that for the number of panels that are divisible by three the structure is kinematically chan-

geable and the determiner of the equation system turns into zero. A field of possible velocities that 

correspond with that is presented. 

Conclusions. For the suggested scheme of the lattice of the girder there are compact formulas that 

allow the evaluation of the rigidity, strength and durability of the elements of the structure. The 

condition for the kinematic changeability that was identified is a warning for a practicing engineer-

ing that there are some unacceptable options for the system parameters. 

 

Keywords: lattice girder, bend, kinematic changeability, analytical solution. 
 

Introduction. The number of statistically determined schemes of flat girders is limited [12, 

13]. The number of girders where an analytical solutions is acceptable is even more so [1—3, 

9, 10, 14, 15, 19, 20]. Analytical solutions that yield accurate results are known, but not all of 

them result in compact and easy-to-use formulas [7]. The advantages of accurate formula so-

lutions for practical calculations, designing new structures and analyzing operational characte-

ristics of existing ones are unquestionable. They can be used as test solutions for checking 

numerical methods or as simple evaluation formulas for a model of a structure.  
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1. Scheme of a girder. A girder has a horizontal lower and an upper skew belt. The lattice 

consists of bars and braces that take up two or three panels (Fig. 1). 

The girder with n panels in the half of the span contains 4n + 2 hinges and m = 8n + 4 rods. In 

order to determine a bending and displacement of the support, it is necessary to determine the 

efforts in the rods of the girder. For symbolic transformations the method of of cutting out the 

nods is most suitable which mathematically involves a solution of a system of equilibrium 

equations for the nodes in the projections onto the coordinate axis. A matrix of the equation 

system consists of a direction cosine of efforts joined with the nodes. The direction cosines 

are determined using the coordinates of the end of the rods. The start of the coordinates can be 

conveniently placed in the left moving support (Fig. 2). 

 

 

 

Fig. 1. Girder. General view at n = 5 

 

The coordinates of the hinges of the girder are as follows: 
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Fig. 2. Numbering of the nodes and rods in the girder at n = 2 
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The order of joining of the rods and hinges is specified using special vectors iq , 1,...,i m  

containing the numbers of the ends of corresponding rods similarly to the way a list of the ribs 

of the graph in discrete mathematics [6]. The configuration of the belts and lattice is deter-

mined with the following vectors: 

2

4

6 2 8 1

6 2 7 1

[ , 1], [ 2 1, 2 2], 1,..., 2 ,

[ , 2 1], 1,..., 2 1,

[3,2 2], [2 4 ,2 1],
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The supports are specified by the vectors: 

 2 1[1,4 3], [2 1,4 4], [2 1,4 5].m m mq n q n n q n n          (1) 

2. Calculating the efforts. Kinematic changeability. A system of equilibrium equations of 

all the nodes of the girder is written in the matrix form:  

 GS R , (2) 

where S  is a vector with the length m of the efforts in the rods; R  is a vector of loads.  

Vertical external forces applied to the node i are written into the even elements of the vector 

and the horizontal ones into the odd ones. Similarly the even lines of the matrix G sized 

m m сonsist of the direction cosines of efforts with the horizontal axis x, the even ones with 

the vertical axis y. In order to calculate a bending, two vectors of loads are necessary:  

––  ,2P jR P  , 2,..., 2j n , is a load from the forces P distributed along the nodes of the 

lower belt,  

––  1,2 1jR   from a single force applied to the middle node 1j n   of the lower belt (see  

Fig. 1, 2).  

All the remaining elements of the vectors PR and 1R  are zero.  

The solution of the system (2) in the system of symbolic mathematics Maple is quicker to get 

using the inverse matrix method without applying special software packages of the system. 

The solution is based on the software [5] that is programmed in the Maple code. The results 

are analytical expressions for efforts in all the rods of the girder. In order to identify the for-

mulas for bending that would hold true for a random number of panels, the calculations is first 

performed sequentially for n = 1, 2, 3, … . It is noted that for numbers of panels that is divisi-

ble by three, the determinant of the matrix G turns into zero. This indicates kinematic chan-

geability of a structure. In order to ensure that, a scheme of possible speeds at n = 3 was found 

(Fig. 3). In Fig. 3 motionless rods 1—12, 12—8 and 12—4 were distinguished. The rods 2—
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11, 11—3 and those symmetrical to them move forward, the rods 2—3 and 10—11 rotate 

around their centers. The rod 9—10 rotates around a momentary center of velocities, the rods 

1—2, 3—4 and 11—12 rotate around one of their ends. The velocities u


 and v


 are con-

nected with the condition / /v a u h  that are due, e.g., an equality of projections of vectors 

of these velocities onto the rod 3—9. 

 

 
 

Fig. 3. Scheme of possible speeds  

 

Therefore in order to avoid a number of panels being divisible by three during a sequential 

solution of problems for girders, a new variable k is introduced that runs through all the natu-

ral numbers sequentially so that a corresponding number of panels will only be acceptable: 

(3(2 1) ( 1) ) / 4, 1,2,3,...kn k k      

3. Bending. A vertical displacement of the node where a bending of a girder is evaluated is 

determined using Moore’s integral: 
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where ,P jS  are the efforts in the j-th rod caused by a specified load; 1, jS  is the effort from a 

single vertical force applied to the middle angle of the lower belt; E  is the elasticity modulus 

of the rods; F  is the area of the section of the rods; jl  is the length of the j-th rod. Summing 

is conducted along all the rods of the girder expect three rigid supporting ones. The analysis 

of the resulting bending formula at 1, 2,...,18k   shows that for any value k the expressions 

for bending is as follows  
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where 2 2c a h  . A difference is only in the coefficients. The dependencies of the coeffi-

cients kA , kB  and kC  on k need to be identified. For that an operator rgf_findrecur of the 

package genfunc of the Maple system is introduced that allow a recurrent equation for mem-

bers of a sequence of the coefficients obtained while counting the girders with a different 

number of panels to be found. E.g., for the coefficient kA  while developing 18 solutions the 

numbers  1, −2, 24, 45, 217, 352, 910, 1309, … were obtained. The operator yields a corres-

ponding homogeneous ninth-order equation:  

1 2 3 4 5 6 7 8 94 4 6 6 4 4 .k k k k k k k k k kA A A A A A A A A A                  

For the solution of the equation the operator rsolve is used: 

4 3 2(15 10(( 1) 3) 5(3( 1) 1) 2(5 29( 1) ) (53( 1) 11) / 2) / 32.k k k k
kA k k k k              

Therefore the sequence of the coefficients at 3c  meets the fifth-order equation:  

1 2 3 4 52 2k k k k k kC C C C C C          

with the solution 

23(2 2(1 3( 1) ) 3( 1) 5) / 8k k
kC k       . 

The coefficient looks a bit different at 3h :  

8 3(cos sin ) 4cos2 1, / 2.kB k k         

Checking an analytical solution that takes time to obtain as symbolic transformations are slow 

already at k > 15 and are necessary for any k as well as quite large ones, e.g., at k > 100. Si-

multaneously comparing the numerical and alalytical results one can prove the effect of ac-

cumulating approximation errors in the numerical methods.  

Based on the above algorithm, a formula is determined for the displacement of the left mov-

ing support of the girder. The displacements are necessary for designing a support structure. 

The displacement is also calculated using the formula (3), but here 1, jS  is the effort from a 

single horizontal force applied to the moving support.  

The final formula is as follows  

2 / .kEF PD a h   

The coefficient in the formula meets the equation  

 1 2 3 4 5 6 7k k k k k k k kD D D D D D D D               (5) 

with the solution 

2(6 2(cos 2 3) cos 2 29 12(cos sin )) / 8.kD k k         
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3. Analysis. The dependence of bending on the number of panels should be analyzed only if 

the length of the flight 2L na is fixed and the total load on the girder is (2 1)sumP n P  . 

Otherwise it is obvious that there will be a growth of bending as the number of panels in-

creases and so does the total load. The suggested way of addressing the problem is in a way 

similar to a designing task of an optimal choice of the panel length and girder height.  

The dependence graph (4) in Fig. 4 is designed for a dimensionless bending ' / ( )EF PL   . 

The coefficients of the resulting dependencies contain “flashing” summands such as ( 1)k .  

In the curved lines there are breaks that are typical of lattice girders [2]. A non-monotonous 

character of the dependence indicates to an engineer that an optimal choice of the number of 

panels of a designed structure is possible. As the number of panels increases, the amplitude of 

leaps goes down and the curved line acquires a constant value. As the height of the girder in-

creases, the bending falls down, which is expected and unpredictable.  

 

 

 

Fig. 4. Bending in the dependence on the number of panels  

 

4. Efforts in the critical rods. An important supplement to a rigidity calculation of a struc-

ture is that of the strength of its elements, which means to determine the efforts in the most 

restrained and stretched rods. In this case it can be done analytically with the formulas of the 

h = 3 m 

h = 4 m 

h = 5 m 
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dependencies of efforts on the number of panels being identified. Obviously under a specified 

load the most restrained rod whose strength is being checked is in the middle of the upper 

belt. Based on the above algorithm, the following formula for the efforts in this rod is ob-

tained by means of induction:  

2(6 2(3 ( 1) ) 4 (cos sin ) 5 ( 1) ) / (16 ).k kS P ak a a k a a a k             

The formula for the efforts in the most stretched rod of the middle of the lower belt is as follows: 

2(6 2(3 ( 1) ) 4 (cos sin ) 5 ( 1) ) / (16 ).k kS P ak a a k a a a k            

Both formulas with identical modules in their accuracy of up to the sign of one summand are 

obtained using the solution of the equation (5). 

Conclusions 

1. The suggested scheme of a statistically determined beam girder accepts a compact analyti-

cal solution for bending and efforts in individual rods. The final formulas are easy to use and 

analyze and contain a sufficient number of varying parameters that characterize a structure 

and a load. Despite the fact that the solution was obtained for the most common type of load 

in the engineering practice, the same algorithm can be employed to obtain analytical solutions 

and other loads. Solutions of similar tasks show that the above load is the most time-

consuming for identifying and solving recurrent solutions. Loads as concentrated forces lead 

to shorter sequences of coefficients based on which the laws of their formation can be found. 

The analysis of the solution in the graphs showed some features of a structure. The bending 

turned out to be a non-monotoneous function of a number of panels. There were no asymptot-

ic properties in the solution but visually there is a horizontal line where the solution is for a 

large number of panels.  

2. The resulting formulas can be used as solutions of the tasks of the main system in the me-

thod of forces of a statistically undetermined girder option, e.g., that obtained by adding side 

braces or by introducing joints where rods of the lattice intersect.  

3. The described algorithm of identifying the calculation formulas can be employed for more 

complex tasks as well, e.g., for calculating spatial structures. These solutions already exist [4]. 

Analytical reviews of the solved tasks of flat girders are in [1, 8]. Evaluations of a bending 

can be instrumental in a non-linear analysis [15] and optimization of girders [16, 17]. 
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