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Statement of the problem. The paper is devoted to the question of practical applicability of a 

mathematical model by Aleinikov-Snitko which describes the contact interaction of a subbase and 

a shallow foundation. The main results of this method were announced with no proof in 2009 in a 

joint article [3]. 

Results. In this paper, based on the methods of integration and the Hankel transform, all the for-

mulas and tools of the model by Aleinikov-Snitko are fully proven and optimized. Here we calcu-

late and compare the results obtained by means of this method and the classical Mindlin method 

based on the theory of elasticity for a foundation whose elastic modulus is given by a power func-

tion. Interestingly, the results obtained are similar in form, but differ in magnitude. Using these re-

sults, we obtain simple approximate formulas for finding the precipitation of the base surface from 

the action of a point vertical load for both methods. 

Conclusions. The formulas proved in the article can be useful in modeling the interaction of the 

soil base and the foundation, which is crucial in construction and design. 
 

Keywords: inhomogeneous linearly deformable half-space, influence matrix, base kernel, transformant, base 

non-uniformity function, quasitransformant, Bessel function, Hankel transform. 

 

Introduction. The problem of mathematical modeling of the interaction of a foundation with 

a subbase is a quite challenging one and has no universal solutions for all types of soils. The 

simplest for engineering calculations is the known Winkler model with one foundation coeffi-

cient. The main disadvantage of this model is that is fundamentally impossible to reflect a dis-

tribution capacity of soil in transmitting a vertical load in a horizontal direction while involv-

ing those layers of soil that are beyond the loading area [11, 13]. 
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Unlike the Winkler model, homogeneous elastic half-space modeling a subbase foundation 

using the elasticity theory causes an increase in the distribution capacity of actual soil.  

In practice in order to mitigate the above disadvantages, the Winkler model is supplemented 

by new parameters (extra foundation coefficients) and a model of an elastic half-space is as-

sumed to have elastic characteristics (elasticity modulus or the Poisson coefficient) that 

change as does the depth of a foundation point.  

In [1, 3] S. М. Аleynikob following N. K. Snitko’s suggestion [15] developed a calculation 

scheme for the interaction of a foundation and heterogeneous foundation base. In this paper an 

analytical aspect of the method is developed and compared with the classical approach based on 

the methods of the elasticity theory and the Fourier transformation. The problem of identifying 

the main part of the deposit of the surface of a soil foundation under the effect of a concentrated 

force is discussed as well as the options for practical implementation of the method.  

1. Statement of the problem and preliminary data. A model of a linearly deformed founda-

tion (half space) will be used where settling w  and   distributed along the area on a daytime 

surface of a half space and the load q  are connected with a ratio 

 ( , ) ( , , , ) ( , ) ,w x y G x y u v q u v du dv


   (1) 

where ( )G x y u v    is a so-called nuclear of an elastic foundation [12]. The latter is an influence 

function that equals the displacement of the point ( )P x y  of a daytime surface of an elastic half-

space caused by a single vertical concentrated force applied to the point ( )Q u v  of the surface.  

Note that for the half-space which is isotropic in a horizontal area when its deformation cha-

racteristics depend only on the vertical coordinate z , nuclear ( , , , )G x y u v depend only on the 

distance r  between P  and Q . It is the case that will be dealt with as we proceed.  

1.1. Representation of the influence function based on the methods of the elasticity theory. 

Let a single load be concentrated at the beginning of the coordinate system XOY  on a daytime 

surface and thus 2 2r x y  . The use of the methods of the elasticity theory and Fourier trans-

formation lead to the following formula [10, 12, 14] while searching for an influence function: 

 00

1
( , ) ( ) ( ) ( ) ,

2
w x y r sc s J sr ds


  

   (2) 

where 0 ( )J x  is the first-class Bessel function of order zero and ( )c s  is a so-called transform 

that meets (according to the Fourier transformation) the equation  

 00
( ) 2 ( ) ( ) .c s r r J sr dr


    (3) 
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Note that the integrals (2) and (3) included in the formulas are nothing but a direct and reverse 

Hankel transformation which for the Bessel function of order k  kJ  is given by the formula 

 
0

( )( ) ( ) ( ) .k kH f r sf s J sr ds


   (4) 

1.2. Calculation of the nuclear using the function of heterogeneity of a foundation. Following 

the example of N.K. Snitko [15], S. М. Аleynikov developed an alternative method for identify-

ing the function   that determines the nuclear for an isotropic, heterogeneous linearly deformed 

half-space. Let ( )E z  be the elasticity modulus of a foundation depending on the depth ,z  and   

is the Poisson coefficient of the half-space that will be considered constant. Then according to 

[1, 3], settling of a daytime surface caused by a single load can be specified with the equation 

 
2 3

2 2
50

(1 )
( ) , ,

2 ( )

z dz
r R r z

e R R


   

   (5) 

where the function  

 
1 2 2 3

3 30 0 0

1 1
( ) ( ) ( ) ( ) , 0

3

R R
e R E Rt t dt E z z dz E z dz R

R R
       (6) 

is generated by the law of change ( )E z  and called the function of heterogeneity of a foundation.   

For a homogeneous space when 0( )E z E const  , the formulas (2) and (5) yield the same 

results while in other cases (e.g., when ( ) n
nE z E z ) these formulas yield similar-looking but 

different expressions for ( )r . 

The comparison of the formulas (2) and (5) shows that the functions ( )c s  and ( )e R  play a simi-

lar role, i.e. they generate a nuclear of an elastic foundation. Certainly there is an issue with iden-

tifying a function similar to ( )c s that corresponds with a new method. I.e. using the specified 

function ( )e R we will be identifying such a function ( )C s so that with the formula (2) it yielded 

the same result that the formula (5). Such a function ( )C s  will be called a quasi-transform one.  

2. Main results 

2.1. Presentation of a quasi-transform using a function of heterogeneity of a foundation. 

The first formula is obtained by inserting the expression (5) into the formula (3): 

2 3

0 050 0 0

(1 )
( ) 2 ( ) ( ) 2 ( )

2 ( )

z dz
C s r r J sr dr r J sr dr

e R R

  
    

   , 

or 

 
2 4

2 2
050 0

(1 )
( ) ( ) , .

4 ( )

dz
C s r J sr dr R r z

e R R

  
   

 
   (7) 
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Changing the integration order, we get the second formula:  

 
2

4 2 2
050 0

(1 )
( ) ( ) , .

4 ( )

r
C s J sr dr dz R r z

e R R

  
   

 
   (8) 

In the formula (7) in the internal integral constr  . Thus 

4 2 2 2 2 2 2 22 2(( ) ) ( ).dz z dz z r r d z r      

Replacing the variable 2 2 2 , 0 ,z r R z r R        by (7) we get  

 

2 2 2 2

050

3 2
2

050

(1 ) ( )
( ) ( )

2 ( )

( )
(1 ) ( )

( )

r

r

R r dR
C s r J sr dr

e R R

R r R dR
r J sr dr

e R R

 

 

  
  

 
 

   
 

 

 
 (9) 

Similar transformations applied for the formula (5) result in the equation 

 
2 3 2 2

2
5 2 4

1 ( ) 1
( ) .

2 ( ) 2 ( ) ( )r r r

R r R dR dR dR
r r

e R R e R R e R R

     
       

    (10) 

Let us change the order of integration in the formula (9) and repalce 0 1r tR t    : 

 

3 3
2

050 0

4 3 41 12 2 3
0 050 0 0 0

( ) (1 ) ( )
( )

1
(1 ) ( ) (1 ) ( ) ( )

( ) ( )

R rR r R
C s J sr dr dR

e R R

tR t R
J sRt Rdt dR t t J sRt dt dR

e R R e R



 

 
   

 
 

      
 

 

   
 (11) 

Let us use the formula (6.2) as suggested by V. G. Korenev [7, p. 23]: 

1
1( ( )) ( ),k k

k k

d
z J z z J z

zdz


  

according to which we get the known equation  

1 1
10

( ) ( )
u k k

k kz J z dz u J u 
   

Then assuming that sR a , we get 

           
1 1 1

1 1
0 0 0 1 02 20 0 0

( ) ( )1 1
( ) ( ) ( ) ( ) a J a J sR

tJ sRt dt tJ at dt atJ at dat zJ z
a a a sR

          (12) 

Integrating individual parts and using the previous formula we have  

3 2
0 0 0 00 0 0 0

2 2 3 2
0 1 1 20 0

( ) ( ) 2 ( )

( ) 2 ( ) ( ) 2 ( )

u t u tu

u u

t J t dt t sJ s ds t sJ s dsdt

u tJ t dt t J t dt u J u u J u

   

    

   
 

 

Hence 

1 13 3 3 2
0 0 1 24 40 0

1 1
( ) ( ) ( ) (( ) ( ) 2( ) ( )).

( ) ( )
t J sRt dt sRt J sRt dsRt sR J sR sR J sR

sR sR
     
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Deducting this formula from (12) and considering (11) we get the expression we need  

 
2

2
2 20

( )2(1 )
( ) .

( )

J sR
C s dR

s e R R


 


 (13) 

2.2. Representation of nuclei and quasi-transforms using a function of heterogeneity of a 

foundation for a power law of change ( )E z . The main results regarding the nuclei deter-

mined using the formulas (2), (3) are related to the power claw of change of the elasticity 

modulus with the depth ( ) 0n
nE z E z n    (the Poisson coefficient const  ). Hence in [6, 7] 

the following expressions for the nuclei and transforms were obtained:  

 
1 1 22 1

2
1 1

2

2 (1 ) ( )1
( ) , ( ) ,

( )

n n n

n nn n
n n

s
r c s

E r E

  

 

  
  

 
 (14) 

where ( )z  is the Euler gamma-function.  

Let us look at how this can be applied to the method based on the function of heterogeneity of 

the foundation. According to the formula (6) we have 

 2 2
3 30 0

1 1
( ) ( )

3

n
R R n n

n

E R
e R E z z dz E z dz

R R n
   

    (15) 

Hence using the formula (10) equivalent to the formula (5), we get 

2 2
2 2

2 4 2 4

2 2

1 1 1

1 1 ( 3) ( 3)
( )

2 ( ) ( ) 2

(1 )( 3) 1 1 (1 )
( )

2 1 ( 3) ( 1)

n n nr r r r
n n

n n n
n n

dR dR n dR n dR
r r r

e R R e R R E R E R

n

E r n r n E r n

   

 

  

      
           

  
   

    

   
 (16) 

The comparison of the formulas (14) and (16) shows that in case when 0n   (homogeneous 

half-space) both methods yield the same result and at 0n   settling of a daytime surface of a 

foundation under a single load calculated using the formulas (5), (6) turns out to be 1n  

times smaller. This indicates that in the foundation model designed using the function of het-

erogeneity of the foundation the distribution capacity of the soil turns out to be smaller than 

that of the model designed based on the laws of the theory of elasticity. Let us show that the 

quasi-transform calculated using the formula (13) is also 1n   times smaller. It is true that the 

integral emerging in (13) is a table integral for the Hankel transformation [11]: 
2 2

2 2
2 2 2 20 0

2 2 2 1 1

2 1

2 1 1

( ) ( 3) ( )2(1 ) 2(1 )
( )

( )

2(1 )( 3) 2 (1/ 2 ( 2) / 2 1) (1 )( 3) 2 ((1 ) / 2)

(1/ 2 ( 2) / 2 1) (( 3) / 2 1)

(1 ) 2 ((1 ) / 2)

(

n n
n

n n n

n
n n

n n

n

J sR n J sR
C s dR dR

s e R R s E R

n n n s n

s E s n E n

s n

E

 



    

 

  

  
  

         
  

      

  




 

.
( 1) / 2)( 1)n n 

  (17) 
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The last equation is obtained using the known property ( 1) ( )z z z    two times [8]. 

2.3. Combined law of changes in the elastiticity modulus with evaluation of the behavior 

of a quasi-nuclear (settling) in zero and infinity. As at 0n   the elasticity modulus n
nE z  

turns to zero on a daytime surface of the half-space, which does not correspond with the actu-

al properties of soil, we will look at a feasible case  

0( ) n
nE z E E z  , 

where 0H
n

E E
E

H


 and HE  is the elasticity modulus at the depth H . Тhen 

0( )
3 3

nnE E
e R R

n
 


, 

and using the formula (10) we get the expression for the quasi-nuclear  

0 2
2 4

2
2 4

0

( )
( ) ( )

3
,

(1 ( / ) ) (1 ( / ) )

n r r

n nr r

dR dR
r r

e R R e R R

dR dR
r

E R Q R R Q R

 

 

 
     

 
 

     

 

 
                 (18) 

where 0( 3)

3
n

n

n E
Q

E


 , а 

21

2

v
 


. At 1n   after the integration we get  

2
0
1 3 2

0

2

3 2
0 0

2

0 3 2
0

3 1 / 2 1
( ) ln

1 / 3 2

3 2 3 1 / 1
ln

3 1 / 2

3 1 / 1
( ) ln ,

1 / 2

r r Q r
r

E Q Q r Q r Q Q

r r Q r

E r E Q Q r Q Q Q

r r Q r
r

E Q Q r Q Q Q

  
  
  
      

  
  
  
      

  
  
  
      

       


        


      


 

where as previously 
2

0
0

1
( )r

E r


 


 is the nuclear of a homogeneous space with the elasticity 

modulus 0E . At 0r   dropping the members converging to zero we get  

2
0 1 1
1 02 2

0 0 0

9 91 1 1
( ) ln / ( ) ln /

4 2 4 2

E E
r r Q r r Q

E r E E

   
   
   
   
   

 
         


. 

Hence at small r  the quasi-nuclear is 0
1 0( ) ( )r r  , but it has the same growth order as 0 ( )r .  

At 2n   after the integration we get  

2 2
0
2 02 3 2 3

0 0

3 2 1 3 1
( ) ( )

3

r r Q r r Q
r arctg r arctg

E r Q Q Q r E Q Q Q r

      
      
      
                  

            . 
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At 0r  dropping the members converging to zero we get  

2
0 2
2 0

0 0

27(1 )
( ) ( )

4 5

E
r r

E E


   

 . 

Let us now examine the behavior of 0 ( )n r  at r    and 0r   in a general case. Using the 

formula (18) and replacing with /t R Q we get 

0 2
2 4

0

2

2 3 4/ /
0

3
( )

(1 ( / ) ) (1 ( / ) )

3 1
.

(1 ) (1 )

n n nr r

n nr Q r Q

dR dR
r r

E R Q R R Q R

dt r dt

E Q t t Q t t

 

 

 
       

 
    

 

 
 

Let r Q , then / 1t r Q   and thus 
1

( / ) 1 1 1

n n
n

n n n

t t
t

Q r t t

 


  
  

.  

Therefore 

2
0

2 3 4/ /
0

2

2 3 4/ /
0

3 1
( )

( 1)

3 1
.

( 1)

nn n nr Q r Q

n n nr Q r Q

dt r dt
r

E Q t t Q t

dt r dt

E Q t Q t t

 

  

 

  

 
     

 
   

 

 
 

Replacing nt  with ( / ) nr Q  , we will strengthen the inequality. Thus after the integration in 

the left and right parts of the inequality we get  

1 2 3
0

1 3 3
0

1 2 3

1 3 3
0

3 1
( )

(( / ) 1)( 1) ( 3)

3 1
,

( 1) (( / ) 1)( 3)

n n

nn n n

n n

n n n

Q r Q
r

E Q Q r n r Q n r

Q r Q

E Q n r Q Q r n r

 

 

 

 

 
       

 
     

 

or 

0
1 1

0

1 1
0

3 2 ( / )
( )

( 1)( 3) (( / ) 1)( 1)

3 2 ( / )
.

( 1)( 3) (( / ) 1)( 3)

n n

nn n n

n n

n n n

Q Q r
r

E n n r Q r n r

Q Q r

E n n r Q r n r

 

 

 
        

 
      

 

Ultimately considering that 0( 3)

3
n

n

n E
Q

E


 , we conclude that at larger r  

2
0

1 1
0

( )3 2 (1 )
( ) .

( 1)( 3) ( 1) 1

n
n

n n n
n

rQ
r

E n n r E n r n 

 
    

    
 

Now let   be some small fixed number and r Q  .  
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Then 

 
2

0 0
2 3 4/ /

0

3 1
( ) ( )

(1 ) (1 )n nn nr Q r Q

dt r dt
r Q

E Q t t Q t t

  
       

  ,  (19) 

and for examining the behavior of 0 ( )n r  at 0r   all we have to do is to evaluate ( )r that 

is behind the bracket. We have 

2 2 2

2 3 4 2 3 4 3 4/ / / / /

1 1
( )

(1 ) (1 ) (1 )

n

n n nr Q r Q r Q r Q r Q

dt r dt dt r dt r dt
r

Q t t Q t t Q t Q t Q t

       
             

     . 

Similarly, we get the estimate below  

2

2 3 4 2/ / /

1 1
( )

(1 )

n

nnr Q r Q r Q

dt r dt dt
r

Q t Q t Q t

   
    

   . 

After the integration we conclude that  

2 2 2

3 3 3

2 1 1 1 2 1 1
( )

3 3( ) 1 3 3( ) 1 3 3( )

n n

n n

r r r
r

r Q Q r Q r Q Q r Q

   
                     

. 

As 0r  and   is a randomly small fixed number, we conclude that ( )r is mostly made  

up of 
2

3r
.  

Therefore going back to the formula (19) we get the estimate 

0 0 0
0

0 0

3 3 2 1 1
( ) ( ) ( ) ( ) ( ) .

3n n nr r Q o Q r o
E E r r r

                         
 

I.e. at any n  0 ( )n r  of almost zero is mostly made up of the nuclear of the elastic half- 0 ( )r . 

As seen from the above results, even at 1, 2n   the expressions for the quasi-nuclear 0 ( )n r ob-

tained based on the formula (18) are complex and not informative (as they contain growing and 

mutually destructive summands). A more simple but quite precise formula for the quasi-nuclear 

is certainly necessary.  

This is the following formula:  

 
2

0
1

0

1
( )

( ( 1) )n n
n

r
E r n E r 

 
 

  
, (20) 

which obviously keeps 0 ( )n r  at the same level of decrease for infinity and growth at zero. 

Tests show that at other arguments the formula proves more accurate for calculating 0 ( )n r as 

shown in the following figures obtained for 1, 2n   at Q = 1 (Fig. 1, 2). 
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Fig. 1. Absolute error of the formula (20) at n = 1 and Q = 1 

 

 

 

Fig. 2. Absolute error of the formula (20) at n = 2 and Q = 1 

 

A somewhat lower accuracy at almost zero is due to the fact that there is not an asymptotic 

approximate equality 0
0( ) ( )n r r  but an equality of the growth rate (equivalency of two 

infinitely large values).  
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Conclusions. The paper looks at a very important problem that has to do with mathematical 

modeling of the interaction between a base and a foundation which is also closely related to 

practical tasks facing foundation design and strength calculations of buildings and structures.  

The model of a soil foundation suggested by Aleynikov-Snitko has been considered in detail. 

By modifying the Hankel transformation the author was able to calculate quasi-transforms 

that correspond with the quasi-nuclear of the foundation. New formulas for the function of 

heterogeneity and a quasi-nuclear of an isotropic, heterogeneous linearly deformed founda-

tions were obtained.  

For the combined power law of changes in the elasticity modulus of an n-order foundation an 

asymptotic behavior of the quasi-nuclear at zero and infinity was studied.  

A simple approximate formula describing a (quasi) nuclear in case of a combined power law 

was obtained.  

The use of the method by Aleynikov-Snitko was found to show a large distribution capacity 

of soil compared to that by Winker and a smaller one than in that of the elastic half-space.  

The obtained formulas will be instrumental in calculating the strength of construction struc-

tures and solutions of spatial tasks of contact interaction of a base and a foundation.  
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