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Statement of the problem. Due to a sharp lack of free areas particularly in large cities, there is a 

growth in the number of high rises. There is an overall principle of construction employing com-

paction of existing residential areas, particularly in central densely populated urban areas. As a re-

sult, there are what is called street canyons of giant cities. They accumulate thermal and contami-

nant pollutions (toxic vapors, aerosols, etc.), which eventually lead to a significant environmental 

degradation. Mathematical modeling allows the dynamics of changes in the air quality in a layer 

adjacent to the ground to be predicted in street canyons and to be instantly controlled. 

Results. The corrected image of the mathematical model of flowing of air flows in urban street 

canyons was proposed to enable a simpler numerical solution while predicting the dynamics of 

change in the air quality in a ground layer. 

Conclusions. Calculations using the suggested equations of the mathematical model would allow 

quicker prediction with no use of complex super-power software. 
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Introduction. Local distribution of pollution in the lower atmospheric layer of city streets 

largely depends on thermal dynamic parameters of the atmospheric boundary layer, from a geo-

metric configuration of buildings, their mutual position and that of heat sources (or pollution).  

This have a major effect on an overall pattern of air flows (a qualititative characteristics). 

Therefore in order to predict turbulization of air flows and a relevant pattern of heat/pollution 

distribution in the ground atmospheric layer of city streets for active management by means of 

pollution emission or justifying the position of air inlets or vents, all flow fields should be 

modeled with the greatest level of precision [1—7]. 
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1. Use of mathematical modeling for describing aerodynamics processes of air flows in-

side city quarters. Let us assume that major similarity parameters determining physical phe-

nomena (the Reynolds and Grashof number) are crucial in this kind of tasks and are way over 

the critical ones that are typical of a turbulent mode. Therefore in order to be able to predict 

better, a mathematical model of air flows in city street canyons should be improved, i.e. a re-

liable solution model for big Reynods and Grashof numbers should be in place.   

The authors of [5] looked at this problem (obtaining stable and sufficienly accurate numerical 

solutions for flow fields with high reverse flow rates) where they dealt with a flow in a bounda-

ry layer over a wall with a rectangular cave (Fig. 1). Here the heat sourcr placed at the bottom 

of the cave models heat/pollution emission generating upstream flows that interacting with the 

main flow of the “blown” air mass (Fig. 1). 
 

 

Fig. 1. For the model described in [5] 

 

It should be noted that a thermally and orographically heterogeneous underlying surface gen-

erates special features of air mass movement (and thus pollution distribution) in the ground 

atmospheric layer. The wind speeds in the vicinity to the ground can get extremely large with 

some areas where the concentration of pollutants is significantly higher than their values over 

a horizontal, thermally homogeneous underlying surface under identical conditions.  

It is only mathematical modeling that is capable of giving some insight into flow distribution 

for an infinite variety of landscapes. It might turn out particularly beneficial to emply mathe-

matical model for emergency heat/pollution emission inside densely populated city quarters. 

Here the use of physical modeling seems extravagant and interpretation of results obtained 

using a physical model in actual city quarters might get tricky (particularly because of the 

“large-scale effect”). For landscape planning and preliminary analysis of an area it is more 

sensible to carry out a series of numerical calculations using the model and employ physical 

modeling only when it is absolutely necessary.  
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Currently for mathematical modeling of atmospheric processes over a complex underlying 

surface three-dimensional models are commonly used [5—7]. They are quite indicative of the 

influence of a variety of factors on air movement and heat and air flow distribution in the 

ground layer of a complex surface. However, for calculations with a high spatial dimesion of 

a dependence the solutions obtained while using three-dimensional models require high-

performance computing machines with an option taking a great deal of time to implement.    

Mathematical modeling is commonly used as a supplement of the result of natural measure-

ments of thermal dynamic and concentration parameters and allows one to predict the above 

values in the space between the points of natural measurements. Therefore developing and 

studying more simple models of atmospheric aerodynamics in the ground layer and pollution 

transfer over a complex underlying surface is an urgent issues that needs extra effort to address.   

2. Mathematical statement of the problem. For numerical modeling throughtout [5] the 

Navier-Stock equation was used that was simplified using the Boussinesq approximation. For 

otiginal functions the initial equations are  
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2 2

2 2 , ,  u w
x z z x

      
         

.  (3) 

The equations are written in the dimensionless and traditional form with the following de-

notations:  

  2
0 0 ,³ / Pr / , Re / .HGr g L v v K U L v        

A homogeneous nonperturbed flow was taken as an initial condition. For a numerical solution 

the boundary of a design calculation area was assumed to be as further away from a perturba-

tion area as possible. As a result, on the wall there were the following boundary conditions:  

 , , .0 su w T C T C     (4) 

Here ܥ∞ and ܥ௦ are constant temperatures in an unnperturbed flow and a heat/pollution source 

respectively; in the left boundary (upstream):   

   , 0, .wu u z T C
x x 
       

 (5) 

In the upper boundary: 
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  ., 0, u U w T C      (6) 

In the right boundary (downstream): 

 0, ,  .0w T C
x x 

 
  

 
 (7) 

Generally for the right boundary the boundary conditions are identical (5): 

   ,  , .wu u x T C
x x 
      

 (8) 

A simplifying transformation of the original equations (1)—(3) was conducted by using a fi-

nite difference scheme and a stationary solution for Gr = 106 and Re = 104 was yielded by the 

numerical solution. In this case induced convection caused by the motion of the boundary 

layer over the rectangular cave dominates the natural convection of the heat/pollution source. 

The reverse flow area existing outside the cave is stable and does not have a significant influ-

ence of the external flow.  

Thus the entire flow field quickly reaches a stationary condition with no physical instabilities.  

If Re = 103 and Gr = 106, the heat/pollution source generates a double area of the reverse flow 

inside the rectangular cave, which is characteristic of natural convention. At early stages 

of the process the reverse flow area does not leave the cave but then it expands and starts 

having a stationary effect on the main “blown” air mass flow. A stationary condition will 

also be reached after a certain time period but before it does, most of the flow will reach 

the cave.  

It was finally shown that at Re = 102 and Gr = 106 a stationary condition is not possible to 

achieve and the reverse flow area increases dramatically considerably influencing the process.  

In the suggested solution of the equations (1)—(3) we have four unknown values. In order to 

simplify the mathematical model [5] and reducing the number of the unknown values let us 

transform the equations in the following way. First let us accept the following denotations 

which are slightly different from those in [5], i.e.: ω is a vortex; ψ is a current function; x, z 

are the coordinates across and up the street; u, w are the wind speeds across and up the street.  

Then the initial equations (1)—(3) will take the following form: 
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2 2

( ) ( ) 1
Re Re

u w Gr T
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;                         (9) 
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;                            (10) 
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2 2

2 2x z
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z





, w
x





.                                    (11) 

In the stationary case (see above): 

 0
t





,   0T

t





.  (12) 

Equation 1: 
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Equation 2: 
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In the first equation the senior derivatives are 
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, for the solution we need 




